Bifurcaciones básicas y formas normales

Spa: Se analizan las características fundamentales de las bifurcaciones locales por pérdida de hiperbolicidad sobre puntos de equilibrios para sistemas 1-paramótricos continuos unidimensionales y bidimensionales, como son las bifurcaciones de fold (o tangente) y la de Hopf. Para el análisis de las...

Бүрэн тодорхойлолт

Номзүйн дэлгэрэнгүй
Үндсэн зохиолч: Aponte Betancur, Héctor
Формат: Documento de Conferencia
Хэл сонгох:spa
Хэвлэсэн: 2021
Онлайн хандалт:http://repositorio.uptc.edu.co/handle/001/7808
Тодорхойлолт
Тойм:Spa: Se analizan las características fundamentales de las bifurcaciones locales por pérdida de hiperbolicidad sobre puntos de equilibrios para sistemas 1-paramótricos continuos unidimensionales y bidimensionales, como son las bifurcaciones de fold (o tangente) y la de Hopf. Para el análisis de las bifurcaciones locales en un sistema dado, se usa transformaciones invertibles locales que dependen del parámetro, con el fin de transformar el sistema en uno de tipo polinómico (forma normal), que sea localmente tolopológicamente equivalente al dado. Luego, en primera instancia se busca comprender las demostraciones de los teoremas de formas normales.De igual forma se presentar´a una aplicación con las características fundamentales de la bifurcación de Hopf, que nos permite comprender la utilización de estos teoremas de formas normales.