Summary: | Spa: Se pretende presentar algunos ejemplos que permiten evidenciar el cálculo del radical de submódulos de Q[x]3, usando algunos resultados de[4]. Algunos autores demuestran la existencia del radical de submódulo de un módulo libre, sin embargo en la literatura actual, poco se habla del cálculo efectivo de di-chos radicales. En [4] muestran una forma de calcular el radical de submódulos deRn donde R es un DIP mediante el uso de matrices primas; pero no se ilustran ejemplos al respecto.El radical de N ≤ M esta dado por radM(N) = ∩P donde P es un submódulo primo de M que contiene a N. Si no hay ningún submódulo primo que contenga a N, entonces decimos que radM(N) = M. A N se le llama submódulo radical siel radM(N) = N. Sea J ={j1, ..., jα} un subconjunto de {1, ..., n} y sea p ∈ R, un elemento primo.Una matriz A ∈ Mn(R) es llamada una matriz prima si satisfacelas siguientes condiciones:(1) A es superior triangular(2) Para todo i, 1 ≤ i ≤ n, aii = p sii∈ J and aii = 1 si i / ∈ J.(3) Para todo i, j, 1 ≤ i < j ≤ n, aij = 0 excepto posiblemente cuando i / ∈ J yj ∈ J. A veces suele llamarse a J el conjunto de enteros asociado con A y se denota porJA. Por las condiciones (i) y (ii) el det(A) = pα.Surge la pregunta natural, si es posible calcular el radical de subm´odulos de Q[x]nusando bases de GrÖbner. Key words and phrases. Radical de Submódulos, Matrices primas.
|