Comportamiento a la compresión y flexión de un pavimento en concreto poroso con adición de fibras sintéticas
Spa: La presente investigación tiene como fin evaluar el comportamiento de un pavimento permeable, a partir de ensayos de resistencia a flexión y compresión, así como pruebas de infiltración y porosidad. Se busca obtener resultados confiables para el diseño de mezcla de un concreto permeable con y s...
Main Author: | |
---|---|
Other Authors: | |
Format: | Trabajo de grado - Pregrado |
Language: | spa |
Published: |
Universidad Pedagógica y Tecnológica de Colombia
2022
|
Subjects: | |
Online Access: | http://repositorio.uptc.edu.co/handle/001/8817 |
_version_ | 1801705872324296704 |
---|---|
author | Chaparro Fajardo, Angie Lizeth |
author2 | Núñez López, Andrés Mauricio |
author_facet | Núñez López, Andrés Mauricio Chaparro Fajardo, Angie Lizeth |
author_sort | Chaparro Fajardo, Angie Lizeth |
collection | DSpace |
description | Spa: La presente investigación tiene como fin evaluar el comportamiento de un pavimento permeable, a partir de ensayos de resistencia a flexión y compresión, así como pruebas de infiltración y porosidad. Se busca obtener resultados confiables para el diseño de mezcla de un concreto permeable con y sin agregado fino, y con adición de fibras sintéticas, generando un diseño de mezcla óptimo para dar solución a los problemas de baja resistencia mecánica, y baja durabilidad comúnmente presentes. En la investigación se partirá por detallar el comportamiento del concreto permeable a nivel mundial, así como sus avances y contribuciones en el desarrollo de la ciencia de los materiales, se estudiaran dos métodos comúnmente usados para el diseño de mezcla, se define el tamaño de agregado grueso optimo, se establece el método
de mezclado y de compactación pertinentes para este tipo de concreto, se realiza la
caracterización de los materiales empleados para la elaboración de los especímenes, se analiza la cantidad optima de aditivos a incluir en el diseño de mezcla, y se realizan ocho tipos de mezclas para concreto permeable variando el porcentaje de fibras a adicionar en porcentajes de 3%, 5% y 7%, finalmente, se realizara un símil entre los resultados obtenidos y se presentara el diseño de mezcla optimo, de tal manera que este pueda ser utilizado de manera confiable y directa garantizando las condiciones de permeabilidad. |
format | Trabajo de grado - Pregrado |
id | repositorio.uptc.edu.co-001-8817 |
institution | Repositorio Institucional UPTC |
language | spa |
publishDate | 2022 |
publisher | Universidad Pedagógica y Tecnológica de Colombia |
record_format | dspace |
spelling | repositorio.uptc.edu.co-001-88172022-09-22T19:52:42Z Comportamiento a la compresión y flexión de un pavimento en concreto poroso con adición de fibras sintéticas Chaparro Fajardo, Angie Lizeth Núñez López, Andrés Mauricio Gamba Gómez, Osmar Albert Pavimentos flexibles Cargas dinámicas (pavimentos) Hormigón - Permeabilidad Deformaciones (Mecánica) Flexión mecánica Resistencia de materiales - Investigaciones Spa: La presente investigación tiene como fin evaluar el comportamiento de un pavimento permeable, a partir de ensayos de resistencia a flexión y compresión, así como pruebas de infiltración y porosidad. Se busca obtener resultados confiables para el diseño de mezcla de un concreto permeable con y sin agregado fino, y con adición de fibras sintéticas, generando un diseño de mezcla óptimo para dar solución a los problemas de baja resistencia mecánica, y baja durabilidad comúnmente presentes. En la investigación se partirá por detallar el comportamiento del concreto permeable a nivel mundial, así como sus avances y contribuciones en el desarrollo de la ciencia de los materiales, se estudiaran dos métodos comúnmente usados para el diseño de mezcla, se define el tamaño de agregado grueso optimo, se establece el método de mezclado y de compactación pertinentes para este tipo de concreto, se realiza la caracterización de los materiales empleados para la elaboración de los especímenes, se analiza la cantidad optima de aditivos a incluir en el diseño de mezcla, y se realizan ocho tipos de mezclas para concreto permeable variando el porcentaje de fibras a adicionar en porcentajes de 3%, 5% y 7%, finalmente, se realizara un símil entre los resultados obtenidos y se presentara el diseño de mezcla optimo, de tal manera que este pueda ser utilizado de manera confiable y directa garantizando las condiciones de permeabilidad. Bibliografía y webgrafía: páginas 81-89. Pregrado Ingeniero Civil 2022-09-22T19:31:07Z 2022-09-22T19:31:07Z 2021 Trabajo de grado - Pregrado http://purl.org/coar/resource_type/c_7a1f info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/TP http://purl.org/coar/version/c_970fb48d4fbd8a85 Chaparro Fajardo, A. L. (2021). Comportamiento a la compresión y flexión de un pavimento en concreto poroso con adición de fibras sintéticas. [Trabajo pregrado, Universidad Pedagógica y Tecnológica de Colombia]. http://repositorio.uptc.edu.co/handle/001/8817 http://repositorio.uptc.edu.co/handle/001/8817 spa ACI. (2010). Report on Pervious Concrete. In ACI Commitee 522 (Issue March). https://www.concrete.org/Portals/0/Files/PDF/Previews/522R-10web.pdf Agar-Ozbek, A. S., Weerheijm, J., Schlangen, E., & Van Breugel, K. (2013). Investigating porous concrete with improved strength: Testing at different scales. Construction and Building Materials, 41, 480–490. https://doi.org/10.1016/j.conbuildmat.2012.12.040 Ahmed, A. M., Hussein, A. H., & Hammood, M. T. (2019). Recycling of disposal Polypropylene Blister Tablets and Strapping ties as fiber reinforcement for Pervious concrete. IOP Conference Series: Materials Science and Engineering, 584(1). https://doi.org/10.1088/1757-899X/584/1/012031 Akand, L., Yang, M., & Wang, X. (2018). Effectiveness of chemical treatment on polypropylene fibers as reinforcement in pervious concrete. Construction and Building Materials, 163, 32–39. https://doi.org/10.1016/j.conbuildmat.2017.12.068 AlShareedah, O., Nassiri, S., Chen, Z., Englund, K., Li, H., & Fakron, O. (2019). Field performance evaluation of pervious concrete pavement reinforced with novel discrete reinforcement. Case Studies in Construction Materials, 10, e00231. https://doi.org/10.1016/j.cscm.2019.e00231 AlShareedah, O., Nassiri, S., & Dolan, J. D. (2019). Pervious concrete under flexural fatigue loading: Performance evaluation and model development. Construction and Building Materials, 207, 17–27. https://doi.org/10.1016/j.conbuildmat.2019.02.111 Angela Susan Hager. (2008). SUSTAINABLE DESIGN OF PERVIOUS CONCRETE PAVEMENTS. Education, August Argos. (2019). PAVIMENTOS DE CONCRETO: ENSAYO DE COMPRESIÓN VS. ENSAYO DE FLEXIÓN. https://www.360enconcreto.com/blog/que-hacercuando/ensayo-compresion-ensayo-flexion-del-concreto Argos, C., & Arango, S. E. (2016a). Concreto permeable (1 de 2). 3, 80–85 Argos, C., & Arango, S. E. (2016b). Concreto permeable (2 de 2). 3, 80–85 Bhutta, M. A. R., Tsuruta, K., & Mirza, J. (2012). Evaluation of high-performance porous concrete properties. Construction and Building Materials, 31, 67–73. https://doi.org/10.1016/j.conbuildmat.2011.12.024 Bonicelli, A., Arguelles, G. M., & Pumarejo, L. G. F. (2016). Improving Pervious Concrete Pavements for Achieving More Sustainable Urban Roads. Procedia Engineering, 161, 1568–1573. https://doi.org/10.1016/j.proeng.2016.08.628 Bonicelli, A., Giustozzi, F., & Crispino, M. (2015). Experimental study on the effects of fine sand addition on differentially compacted pervious concrete. Construction and Building Materials, 91, 102–110. https://doi.org/10.1016/j.conbuildmat.2015.05.012 Bonicelli Alessandra, G. M. G. F. (2016). Improving Pervious Concrete Pavements for Achieving More Sustainable Urban Roads. Procedia Engineering, 161, 1568–1573. https://doi.org/10.1016/j.proeng.2016.08.628 Brake, N. A., Allahdadi, H., & Adam, F. (2016). Flexural strength and fracture size effects of pervious concrete. Construction and Building Materials, 113, 536–543. https://doi.org/10.1016/j.conbuildmat.2016.03.045 Caetano, H., Rodrigues, J. P. C., & Pimienta, P. (2019). Flexural strength at high temperatures of a high strength steel and polypropylene fibre concrete. Construction and Building Materials, 227, 116721. https://doi.org/10.1016/j.conbuildmat.2019.116721 Chandrappa, A. K., & Biligiri, K. P. (2016). Pervious concrete as a sustainable pavement material – Research findings and future prospects : A state-of-the-art review. Construction and Building Materials, 111, 262–274. https://doi.org/10.1016/j.conbuildmat.2016.02.054 Chandrappa, A. K., & Biligiri, K. P. (2017). Flexural-fatigue characteristics of pervious concrete: Statistical distributions and model development. Construction and Building Materials, 153, 1–15. https://doi.org/10.1016/j.conbuildmat.2017.07.081 Chang, J. J., Yeih, W., Chung, T. J., & Huang, R. (2016). Properties of pervious concrete made with electric arc furnace slag and alkali-activated slag cement. Construction and Building Materials, 109, 34–40. https://doi.org/10.1016/j.conbuildmat.2016.01.049 Chen, J., Yin, X., Wang, H., & Ding, Y. (2018). Evaluation of durability and functional performance of porous polyurethane mixture in porous pavement. Journal of Cleaner Production, 188, 12–19. https://doi.org/10.1016/j.jclepro.2018.03.297 Chen, Y., Wang, K., Wang, X., & Zhou, W. (2013). Strength, fracture and fatigue of pervious concrete. Construction and Building Materials, 42, 97–104. https://doi.org/10.1016/j.conbuildmat.2013.01.006 Crouch, L. K., Smith, N., Walker, A. C., Tim R. Dunn, A., & Sparkman, A. (2006). Determining Pervious PCC Permeability with a Simple Triaxial Flexible-Wall Constant Head Permeameter. 931, هرامش 8; ص 99-117. Dávila, C. J. M. C. A. y P. (2011). INFLUENCIA DE LAS FIBRAS DE POLIPROPILENO EN LAS PROPIEDADES DEL CONCRETO EN ESTADOS PLÁSTICO Y ENDURECIDO. 2, 36. Debnath, B., & Sarkar, P. P. (2019). Permeability prediction and pore structure feature of pervious concrete using brick as aggregate. Construction and Building Materials, 213, 643–651. https://doi.org/10.1016/j.conbuildmat.2019.04.099 Deo, O., & Neithalath, N. (2011). Compressive response of pervious concretes proportioned for desired porosities. Construction and Building Materials, 25(11), 4181–4189. https://doi.org/10.1016/j.conbuildmat.2011.04.055 Eidan, J., Rasoolan, I., Rezaeian, A., & Poorveis, D. (2019). Residual mechanical properties of polypropylene fiber-reinforced concrete after heating. Construction and Building Materials, 198, 195–206. https://doi.org/10.1016/j.conbuildmat.2018.11.209 Giustozzi, F. (2016). Polymer-modified pervious concrete for durable and sustainable transportation infrastructures. Construction and Building Materials, 111, 502–512. https://doi.org/10.1016/j.conbuildmat.2016.02.136 Grubeša, I. N., Barišić, I., Ducman, V., & Korat, L. (2018). Draining capability of singlesized pervious concrete. Construction and Building Materials, 169, 252–260. https://doi.org/10.1016/j.conbuildmat.2018.03.037 Guzmán, D. S. de. (n.d.). Tecnologia del concreto y del mortero. Hesami, S., Ahmadi, S., & Nematzadeh, M. (2014). Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Construction and Building Hesami, S., Ahmadi, S., & Nematzadeh, M. (2014). Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. Construction and Building Huang, B., Wu, H., Shu, X., & Burdette, E. G. (2010). Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Construction and Building Materials, 24(5), 818–823. https://doi.org/10.1016/j.conbuildmat.2009.10.025 Ibrahim, A., Mahmoud, E., Yamin, M., & Patibandla, V. C. (2014). Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Construction and Building Materials, 50, 524–529. https://doi.org/10.1016/j.conbuildmat.2013.09.022 Kayhanian, M., Li, H., Harvey, J. T., & Liang, X. (2019). Application of permeable pavements in highways for stormwater runoff management and pollution prevention: California research experiences. International Journal of Transportation Science and Technology, 8(4), 358–372. https://doi.org/10.1016/j.ijtst.2019.01.001 Kevern, J. T. (2015). Evaluating permeability and infiltration requirements for pervious concrete. Journal of Testing and Evaluation, 43(3), 544–553. https://doi.org/10.1520/JTE20130180 Kia, A., Wong, H. S., & Cheeseman, C. R. (2017). Clogging in permeable concrete: A review. Journal of Environmental Management, 193(September), 221–233. https://doi.org/10.1016/j.jenvman.2017.02.018 Kim, Y. J., Gaddafi, A., & Yoshitake, I. (2016). Permeable concrete mixed with various admixtures. Materials and Design, 100, 110–119. https://doi.org/10.1016/j.matdes.2016.03.109 Korat, L., Ducman, V., & Netinger, I. (2015). Influence of aggregate type and size on properties of pervious concrete. 78, 69–76. https://doi.org/10.1016/j.conbuildmat.2014.12.073 Lian, C., & Zhuge, Y. (2010a). Optimum mix design of enhanced permeable concrete - An experimental investigation. Construction and Building Materials, 24(12), 2664– 2671. https://doi.org/10.1016/j.conbuildmat.2010.04.057 Lian, C., & Zhuge, Y. (2010b). Optimum mix design of enhanced permeable concrete - An experimental investigation. Construction and Building Materials, 24(12), 2664. Lian, C., Zhuge, Y., & Beecham, S. (2011). The relationship between porosity and strength for porous concrete. Construction and Building Materials, 25(11), 4294– 4298. https://doi.org/10.1016/j.conbuildmat.2011.05.005 Liu, T., Wang, Z., Zou, D., Zhou, A., & Du, J. (2019). Strength enhancement of recycled aggregate pervious concrete using a cement paste redistribution method. Cement and Concrete Research, 122(May), 72–82. https://doi.org/10.1016/j.cemconres.2019.05.004 López-Carrasquillo, V., & Hwang, S. (2017). Comparative assessment of pervious concrete mixtures containing fly ash and nanomaterials for compressive strength, physical durability, permeability, water quality performance and production cost. Construction and Building Materials, 139, 148–158. https://doi.org/10.1016/j.conbuildmat.2017.02.052 Lopez, R., Pialarissi, S., Pujadas, P., & Aguado, A. (2017). Innovaciones y avances en el ambito de los pavimentos urbanos para smart cities. 8. Lu, G., Renken, L., Li, T., Wang, D., Li, H., & Oeser, M. (2019). Experimental study on the polyurethane-bound pervious mixtures in the application of permeable pavements. Construction and Building Materials, 202, 838–850. https://doi.org/10.1016/j.conbuildmat.2019.01.051 Maguesvari, M. U., & Narasimha, V. L. (2013). Studies on Characterization of Pervious Concrete for Pavement Applications. Procedia - Social and Behavioral Sciences, 104, 198–207. https://doi.org/10.1016/j.sbspro.2013.11.112 Meddah, M. S., & Hago, A. W. (2017). ScienceDirect Effect of granular fraction combinations on pervious concrete performance. Materials Today: Proceedings, 4(9), 9700–9704. https://doi.org/10.1016/j.matpr.2017.06.250 Meininger, R. C. (1988). Pervious Concrete lar Paving. Mohammed, B. S., Liew, M. S., Alaloul, W. S., Khed, V. C., Hoong, C. Y., & Adamu, M. (2018). Properties of nano-silica modified pervious concrete. Case Studies in Construction Materials, 8(January), 409–422. https://doi.org/10.1016/j.cscm.2018.03.009 National Ready Mixed Concrete Association •. (n.d.). PIP 3 – Acceptance Testing of Pervious Concrete. Nguyen, D. H., Sebaibi, N., Boutouil, M., Leleyter, L., & Baraud, F. (2014). A modified method for the design of pervious concrete mix. Construction and Building Materials, 73, 271–282. https://doi.org/10.1016/j.conbuildmat.2014.09.088 Paul, T. D., Michael, L. L., David, A. J., Tennis, P. D., Leming, M. L., & Akers, D. J. (2004). Pervious Concrete Pavements : Vol. Portland C (Issue January 2004). Portland Cement Association. (2004). Diseño y Control de Mezclas de Diseño y Control de Mezclas de Concreto. Rahman, S., Northmore, A. B., Henderson, V., & Tighe, S. L. (2015). Developing A Framework for Low-Volume Road Implementation of Pervious Concrete Pavements. International Journal of Transportation Science and Technology, 4(1), 77–91. https://doi.org/10.1260/2046-0430.4.1.77 Rangelov, M., Nassiri, S., Chen, Z., Russell, M., & Uhlmeyer, J. (2017). ScienceDirect Quality evaluation tests for pervious concrete pavements ’ placement. International Journal of Pavement Research and Technology, 10(3), 245–253. https://doi.org/10.1016/j.ijprt.2017.01.007 Rangelov, M., Nassiri, S., Haselbach, L., & Englund, K. (2016). Using carbon fiber composites for reinforcing pervious concrete. Construction and Building Materials, 126, 875–885. https://doi.org/10.1016/j.conbuildmat.2016.06.035 Rehder, B., Banh, K., & Neithalath, N. (2014). Fracture behavior of pervious concretes: The effects of pore structure and fibers. Engineering Fracture Mechanics, 118, 1– 16. https://doi.org/10.1016/j.engfracmech.2014.01.015 Rostami, R., Zarrebini, M., Mandegari, M., Sanginabadi, K., Mostofinejad, D., & Abtahi, S. M. (2019). The effect of concrete alkalinity on behavior of reinforcing polyester and polypropylene fibers with similar properties. Cement and Concrete Composites, 97(August 2018), 118–124. https://doi.org/10.1016/j.cemconcomp.2018.12.012 Saadeh, S., Ralla, A., Al-Zubi, Y., Wu, R., & Harvey, J. (2019). Application of fully permeable pavements as a sustainable approach for mitigation of stormwater runoff. International Journal of Transportation Science and Technology, 8(4), 338–350. https://doi.org/10.1016/j.ijtst.2019.02.001 Sartipi, M., & Sartipi, F. (2019). Stormwater retention using pervious concrete pavement: Great Western Sydney case study. Case Studies in Construction Materials, 11, e00274. https://doi.org/10.1016/j.cscm.2019.e00274 Schaefer, V. R., & Kevern, J. T. (2011). An Integrated Study of Pervious Concrete Mixture Design for Wearing Course Applications An Integrated Study of Pervious Concrete Mixture Design for Wearing. Shu, X., Huang, B., Wu, H., Dong, Q., & Burdette, E. G. (2011). Performance comparison of laboratory and field produced pervious concrete mixtures. Construction and Building Materials, 25(8), 3187–3192. https://doi.org/10.1016/j.conbuildmat.2011.03.002 Sun, J. (2013). Strength criterion for ecological light porous concrete under multiaxial stress. Construction and Building Materials, 44, 663–670. https://doi.org/10.1016/j.conbuildmat.2013.03.062 Tabatabaeian, M., Khaloo, A., & Khaloo, H. (2019). An innovative high performance pervious concrete with polyester and epoxy resins. Construction and Building Materials, 228, 116820. https://doi.org/10.1016/j.conbuildmat.2019.116820 Tang, C. W., Cheng, C. K., & Tsai, C. Y. (2019). Mix design and mechanical properties of high-performance pervious concrete. Materials, 12(16). https://doi.org/10.3390/ma12162577 Torres, A., Hu, J., & Ramos, A. (2015). The effect of the cementitious paste thickness on the performance of pervious concrete. Construction and Building Materials, 95, 850–859. https://doi.org/10.1016/j.conbuildmat.2015.07.187 Wang, D., Ju, Y., Shen, H., & Xu, L. (2019). Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber. Construction and Building Materials, 197, 464–473. https://doi.org/10.1016/j.conbuildmat.2018.11.181 Wang, H., Li, H., Liang, X., Zhou, H., Xie, N., & Dai, Z. (2019). Investigation on the mechanical properties and environmental impacts of pervious concrete containing fly ash based on the cement-aggregate ratio. Construction and Building Materials, 202, 387–395. https://doi.org/10.1016/j.conbuildmat.2019.01.044 Xie, N., Akin, M., & Shi, X. (2019). Permeable concrete pavements: A review of environmental benefits and durability. Journal of Cleaner Production, 210, 1605– 1621. https://doi.org/10.1016/j.jclepro.2018.11.134 Xu, G., Shen, W., Huo, X., Yang, Z., Wang, J., Zhang, W., & Ji, X. (2018). Investigation on the properties of porous concrete as road base material. Construction and Building Materials, 158, 141–148. https://doi.org/10.1016/j.conbuildmat.2017.09.151 Zhang, A., Li, Z., Zhou, M., Cao, Y., Jiang, B., & Qiu, S. (2011). Research on permeable concrete interface structure. 2011 International Conference on Electric Technology and Civil Engineering, ICETCE 2011 - Proceedings, 3410–3412. https://doi.org/10.1109/ICETCE.2011.5775780 Zhong, R., & Wille, K. (2015). Material design and characterization of high performance pervious concrete. Construction and Building Materials, 98, 51–60. https://doi.org/10.1016/j.conbuildmat.2015.08.027 Zhong, R., & Wille, K. (2016). Compression response of normal and high strength pervious concrete. Construction and Building Materials, 109, 177–187. https://doi.org/10.1016/j.conbuildmat.2016.01.051 Zhong, R., & Wille, K. (2018). Influence of matrix and pore system characteristics on the durability of pervious concrete. Construction and Building Materials, 162, 132–141. https://doi.org/10.1016/j.conbuildmat.2017.11.175 Zhou, H., Li, H., Abdelhady, A., Liang, X., Wang, H., & Yang, B. (2019). Experimental investigation on the effect of pore characteristics on clogging risk of pervious concrete based on CT scanning. Construction and Building Materials, 212, 130– 139. https://doi.org/10.1016/j.conbuildmat.2019.03.310 Zhou, J., Zheng, M., Wang, Q., Yang, J., & Lin, T. (2016). Flexural fatigue behavior of polymer-modified pervious concrete with single sized aggregates. Construction and Building Materials, 124, 897–905. https://doi.org/10.1016/j.conbuildmat.2016.07.136 Zhu, H., Yu, M., Zhu, J., Lu, H., & Cao, R. (2019). Simulation study on effect of permeable pavement on reducing flood risk of urban runoff. International Journal of Transportation Science and Technology, 8(4), 373–382. https://doi.org/10.1016/j.ijtst.2018.12.001 Copyright (c) 2021 Universidad Pedagógica y Tecnológica de Colombia Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ info:eu-repo/semantics/openAccess Licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0) http://purl.org/coar/access_right/c_abf2 1 recurso en línea (100 páginas) : ilustraciones application/pdf application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia Facultad Ingeniería Tunja Ingeniería Civil |
spellingShingle | Pavimentos flexibles Cargas dinámicas (pavimentos) Hormigón - Permeabilidad Deformaciones (Mecánica) Flexión mecánica Resistencia de materiales - Investigaciones Chaparro Fajardo, Angie Lizeth Comportamiento a la compresión y flexión de un pavimento en concreto poroso con adición de fibras sintéticas |
title | Comportamiento a la compresión y flexión de un pavimento en concreto poroso con adición de fibras sintéticas |
title_full | Comportamiento a la compresión y flexión de un pavimento en concreto poroso con adición de fibras sintéticas |
title_fullStr | Comportamiento a la compresión y flexión de un pavimento en concreto poroso con adición de fibras sintéticas |
title_full_unstemmed | Comportamiento a la compresión y flexión de un pavimento en concreto poroso con adición de fibras sintéticas |
title_short | Comportamiento a la compresión y flexión de un pavimento en concreto poroso con adición de fibras sintéticas |
title_sort | comportamiento a la compresion y flexion de un pavimento en concreto poroso con adicion de fibras sinteticas |
topic | Pavimentos flexibles Cargas dinámicas (pavimentos) Hormigón - Permeabilidad Deformaciones (Mecánica) Flexión mecánica Resistencia de materiales - Investigaciones |
url | http://repositorio.uptc.edu.co/handle/001/8817 |
work_keys_str_mv | AT chaparrofajardoangielizeth comportamientoalacompresionyflexiondeunpavimentoenconcretoporosoconadiciondefibrassinteticas |