Distribución espacial y temporal de la diversidad taxonómica de aves en el gradiente altitudinal de la Serranía de las Quinchas, Colombia

Spa: Este documento se organizó en tres capítulos. En el capítulo I, se presenta una introducción general, las preguntas de investigación, los objetivos y se desarrolla el marco conceptual y los antecedentes de la investigación. El capítulo II, versa sobre la diversidad taxonómica en sus dimensiones...

Full description

Bibliographic Details
Main Author: García Monroy, Juan Sebastián
Other Authors: Carvajal Cogollo, Juan Emiro
Format: Trabajo de grado - Maestría
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2022
Subjects:
Online Access:http://repositorio.uptc.edu.co/handle/001/8881
_version_ 1801705885526917120
author García Monroy, Juan Sebastián
author2 Carvajal Cogollo, Juan Emiro
author_facet Carvajal Cogollo, Juan Emiro
García Monroy, Juan Sebastián
author_sort García Monroy, Juan Sebastián
collection DSpace
description Spa: Este documento se organizó en tres capítulos. En el capítulo I, se presenta una introducción general, las preguntas de investigación, los objetivos y se desarrolla el marco conceptual y los antecedentes de la investigación. El capítulo II, versa sobre la diversidad taxonómica en sus dimensiones alfa y beta, así como la relación de estas diversidades con predictores regionales del clima y la topografía como lo son, la precipitación media anual, la temperatura media anual, la humedad anual, la elevación, el aspecto, la rudeza, la pendiente y la cantidad de cobertura. Por lo que nosotros planteamos las hipótesis entorno a que habrá diferencia en la riqueza de especies entre las tres regiones de vida presentes en la serranía de Las Quinchas, siendo la zona Subandina o la de elevación máxima entre los 1000 – 1500 m la más diversa y la tropical-baja ubicada entre los 300 – 550 m, presentará los valores con menor diversidad, efecto contrario en la abundancia la cual presentara los menores valores en las regiones de vida Subandina, y los valores máximos en las regiones de vida tropical, además de que aspectos del clima como la temperatura y la humedad tendrán un papel esencial en este patrón de distribución dentro del gradiente incompleto (Rahbek, 1995; Tingley et al. 2009). El capítulo III, muestra a partir del patrón de distribución del ensamblaje de especies de aves presente en la serranía de Las Quinchas, bajo el parámetro de variables a escala local como la temperatura, humedad, precipitación, elevación y tipo de cobertura, el patrón de distribución dentro de este gradiente altitudinal, el cual bajo la premisa de que va a seguir un comportamiento de dominio-medio, debido a que existe una regla generalizada para esto (Stevens, 1992; Rahbek, 1995); y a que habrá un aumento de la riqueza de especies en las mayores elevaciones del gradiente incompleto, perteneciente a la región de vida Subandina, debido a que esta zona presenta una mayor heterogeneidad ambiental, así como condiciones idóneas para el establecimiento de un mayor número de especies, mientras que en las regiones de vida bajas va a presentarse una menor riqueza (Rahbek, 1995; McCain, 2009; Kattan & Franco, 2004). Por último, se aporta una discusión y conclusiones generales en torno a la hipótesis de investigación y al objetivo general de la tesis.
format Trabajo de grado - Maestría
id repositorio.uptc.edu.co-001-8881
institution Repositorio Institucional UPTC
language spa
publishDate 2022
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format dspace
spelling repositorio.uptc.edu.co-001-88812024-03-15T14:56:34Z Distribución espacial y temporal de la diversidad taxonómica de aves en el gradiente altitudinal de la Serranía de las Quinchas, Colombia García Monroy, Juan Sebastián Carvajal Cogollo, Juan Emiro Diversidad biológica - Serranía de las Quinchas (Boyacá, Colombia) Fauna - Conservación de especímenes Conservación de la biodiversidad Modelos de distribución Gradiente de elevación Variables climáticas Andes colombianos Spa: Este documento se organizó en tres capítulos. En el capítulo I, se presenta una introducción general, las preguntas de investigación, los objetivos y se desarrolla el marco conceptual y los antecedentes de la investigación. El capítulo II, versa sobre la diversidad taxonómica en sus dimensiones alfa y beta, así como la relación de estas diversidades con predictores regionales del clima y la topografía como lo son, la precipitación media anual, la temperatura media anual, la humedad anual, la elevación, el aspecto, la rudeza, la pendiente y la cantidad de cobertura. Por lo que nosotros planteamos las hipótesis entorno a que habrá diferencia en la riqueza de especies entre las tres regiones de vida presentes en la serranía de Las Quinchas, siendo la zona Subandina o la de elevación máxima entre los 1000 – 1500 m la más diversa y la tropical-baja ubicada entre los 300 – 550 m, presentará los valores con menor diversidad, efecto contrario en la abundancia la cual presentara los menores valores en las regiones de vida Subandina, y los valores máximos en las regiones de vida tropical, además de que aspectos del clima como la temperatura y la humedad tendrán un papel esencial en este patrón de distribución dentro del gradiente incompleto (Rahbek, 1995; Tingley et al. 2009). El capítulo III, muestra a partir del patrón de distribución del ensamblaje de especies de aves presente en la serranía de Las Quinchas, bajo el parámetro de variables a escala local como la temperatura, humedad, precipitación, elevación y tipo de cobertura, el patrón de distribución dentro de este gradiente altitudinal, el cual bajo la premisa de que va a seguir un comportamiento de dominio-medio, debido a que existe una regla generalizada para esto (Stevens, 1992; Rahbek, 1995); y a que habrá un aumento de la riqueza de especies en las mayores elevaciones del gradiente incompleto, perteneciente a la región de vida Subandina, debido a que esta zona presenta una mayor heterogeneidad ambiental, así como condiciones idóneas para el establecimiento de un mayor número de especies, mientras que en las regiones de vida bajas va a presentarse una menor riqueza (Rahbek, 1995; McCain, 2009; Kattan & Franco, 2004). Por último, se aporta una discusión y conclusiones generales en torno a la hipótesis de investigación y al objetivo general de la tesis. Bibliografía y webgrafía al final de cada capítulo. Maestría Magister en Ciencias Biológicas 2022-10-19T15:29:13Z 2022-10-19T15:29:13Z 2022 Trabajo de grado - Maestría http://purl.org/coar/resource_type/c_bdcc info:eu-repo/semantics/masterThesis info:eu-repo/semantics/publishedVersion Text https://purl.org/redcol/resource_type/TM http://purl.org/coar/version/c_970fb48d4fbd8a85 García Monroy, J. S. (2022). Distribución espacial y temporal de la diversidad taxonómica de aves en el gradiente altitudinal de la Serranía de las Quinchas, Colombia. [Tesis de maestría, Universidad Pedagógica y Tecnológica de Colombia]. http://repositorio.uptc.edu.co/handle/001/8881 http://repositorio.uptc.edu.co/handle/001/8881 spa Woodward G. & Hildrew A. G. (2001). Invasion of a stream food web by a new top predator. Journal of Animal Ecology, 70(2), 273-288. Auer S. K., King D. I. (2014). Ecological and life‐history traits explain recent boundary shifts in elevation and latitude of western N orth A merican songbirds. Global Ecology and biogeography, 23(8), 867-875. Aust.J. Ecol. 18: 117–143. https://doi.org/10.1111/geb.12174 Bae S., Müller J., Lee D., Vierling K. T., Vogeler J. C., Vierling L. A., Thorn S. (2018). Taxonomic, functional, and phylogenetic diversity of bird assemblages are oppositely associated to productivity and heterogeneity in temperate forests. Remote Sensing of Environment, 215, 145-156. https://doi.org/10.1016/j.rse.2018.05.031 Baselga A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and biogeography, 19(1), 134-143. https://doi.org/10.1111/j.1466-8238.2009.00490.x Begon M., Harper J., Townsend C. (1990). Ecology: individuals, populations and communities. Blackwell Scientific Publications, Boston. In: Oxford, London, Edinburgh, Melbourne. Boyle W. A. (2008). Can variation in risk of nest predation explain altitudinal migration in tropical birds? Oecologia, 155(2), 397-403. https://doi.org/10.1007/s00442-007-0897-6 Brehm G., Colwell R. K., Kluge J. (2007). The role of environment and mid‐ domain effect on moth species richness along a tropical elevational gradient. Global Ecology and Biogeography 16(2), 205-219. https://doi.org/10.1111/j.1466- 8238.2006.00281.x Buckley L. B., Jetz, W. (2007). Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society B: Biological Sciences, 274(1614), 1167-1173. https://doi.org/10.1098/rspb.2006.0436 Cadena C. D., Kozak K. H., Gomez J. P., Parra J. L., McCain C. M., Bowie R. C., Roberts T. E. (2012). Latitude, elevational climatic zonation and speciation in New World vertebrates. Proceedings of the Royal Society B: Biological Sciences, 279(1726), 194-201. https://doi.org/10.1098/rspb.2011.0720 Camacho J., Guerra A. H., Quijano R. O., Walschburger T. (1992). Centros de endemismos en Colombia. Mexico: Acta Zoologica Mexicana, Volumen especial. Capinha C., Essl F., Seebens H., Moser D., Pereira H. M. (2015). The dispersal of alien species redefines biogeography in the Anthropocene. Science, 348(6240), 1248-1251. https://doi.org/10.1126/science.aaa8913 Niipele J. N., Chen J. (2019). The usefulness of alos-palsar dem data for drainage extraction in semi-arid environments in The Iishana sub-basin. Journal of Hydrology: Regional Studies, 21, 57-67. https://doi.org/10.1016/j.ejrh.2018.11.003 O’Dea N., Whittaker R.J. Ugland K.I. (2006) Using spatial heterogeneity to extrapolate species richness: a new method tested on Ecuadorian cloud forest birds. Journal of Applied Ecology, 43, 189–198. https://doi.org/10.1111/j.1365- 2664.2006.01143.x Pineda J. (1993). Boundary effects on the vertical ranges of deep-sea benthic species. Deep Sea Research Part I: Oceanographic Research Papers, 40(11-12), 2179-2192. https://doi.org/10.1016/0967-0637(93)90097-M Plummer M., Stukalov A., Denwood M. (2016). rjags: Bayesian graphical models using MCMC. R package version, 4(6). Rahbek C. (1995). The elevational gradient of species richness: a uniform pattern? Ecography, 18(2), 200-205. Fluck I. E., Cáceres N., Hendges C. D., Brum M. D. N., Dambros C. S. (2020). Climate and geographic distance are more influential than rivers on the beta diversity of passerine birds in Amazonia. Ecography, 43(6), 860-868. https://doi.org/10.1111/ecog.04753 Rahbek C., Gotelli, N. J., Colwell, R. K., Entsminger, G. L., Rangel, T. F. L., & Graves, G. R. (2007). Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 274(1607), 165-174. https://doi.org/10.1098/rspb.2006.3700 Rapoport E. H. (1975). Aerografía: estrategias geográficas de las especies: Fondo de Cultura Económica México, MX. Rodriguez E., Morris, C. S., Belz, J. E., Chapin, E. C., Martin, J. M., Daffer, W., & Hensley, S. (2005). An assessment of the SRTM topographic products.–2005. JPL Pub. D, 31639. Texera W. A. (1973). Distribución y diversidad de mamíferos y aves en la provincia de magallanes. II Algunas notas ecológicas sobre los canales patagónicos. In Anales del Instituto de la Patagonia. Instituto de la Patagonia. Rahbek C. (2005). The role of spatial scale and the perception of large‐scale species‐richness patterns. Ecology letters, 8(2), 224-239. https://doi.org/10.1111/j.1461-0248.2004.00701.x Russell R. E., Royle J. A., Saab V. A., Lehmkuhl J. F., Block W. M., Sauer J. R. (2009). Modeling the effects of environmental disturbance on wildlife communities: avian responses to prescribed fire. Ecological Applications, 19(5), 1253-1263. https://doi.org/10.1890/08-0910.1 Sanders N. J., Rahbek C. (2012). The patterns and causes of elevational diversity gradients. Ecography, 35(1), 1-3. https://doi.org/10.1111/j.1600-0587.2011.07338.x Santillán V., Quitián M., Tinoco B. A., Zárate E., Schleuning M., Böhning-Gaese K., Neuschulz E. L. (2018). Spatio-temporal variation in bird assemblages is associated with fluctuations in temperature and precipitation along a tropical elevational gradient. PLoS One, 13(5), e0196179. https://doi.org/10.1371/journal.pone.0196179 Sauer J. R., Link W. A. (2002). Hierarchical modeling of population stability and species group attributes from survey data. Ecology, 83(6), 1743-1751. https://doi.org/10.1890/0012-9658(2002)083[1743:HMOPSA]2.0.CO;2 Serafini V. N., Priotto J. W., Gomez M. D. (2019). Effects of agroecosystem landscape complexity on small mammals: a multi-species approach at different spatial scales. Landscape Ecology, 34(5), 1117-1129. https://doi.org/10.1007/s10980-019-00825-8 Smith M. A. (2015). Ants, elevation, phylogenetic diversity and community structure. Ecosphere, 6(11), 1-17. https://doi.org/10.1890/ES14-00473.1 Socolar J. B., Mills S. C., Haugaasen T., Gilroy J. J., Edwards D. P. (2021). Biogeographic multi-species occupancy models for large-scale survey data. bioRxiv. https://doi.org/10.1101/2021.11.05.467527 Forero-Medina G., Terborgh J., Socolar S. J., Pimm S. L. (2011). Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures. PLoS One, 6(12), e28535. https://doi.org/10.1371/journal.pone.0028535 Spiegelhalter D., Thomas, A., Best, N., & Lunn, D. (2003). WinBUGS user manual. In: Citeseer. Stackhouse P., Whitlock C., Chandle W., Hoell J., Zhang T. (2004). Solar renewable energy data sets from NASA satellites and research. In Proceedings of the solar conference (pp. 279-284). AMERICAN SOLAR ENERGY SOCIETY; AMERICAN INSTITUTE OF ARCHITECTS. Ralph C. J., Sauer J. R., Droege S. (1995). Monitoring bird populations by point counts. Gen. Tech. Rep. PSW-GTR-149. Albany, CA: US Department of Agriculture, Forest Service, Pacific Southwest Research Station. 187 p, 149. Tingley M. W., Monahan W. B., Beissinger S. R., Moritz C. (2009). Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Sciences, 106(Supplement 2), 19637-19643. https://doi.org/10.1073/pnas.0901562106 Stiles F. G. (1998). Las aves endémicas de Colombia. Informe nacional sobre el estado de la biodiversidad en Colombia, 1, 378-385. Stiles F. G., Bohórquez C. I. (2000). Evaluando el estado de la Biodiversidad: el caso de la avifauna de la Serranía de las Quinchas, Boyacá, Colombia. Caldasia, 22(1), 61-92. Su Y. S., Yajima M. (2015). R2jags: Using R to Run ‘JAGS’. R package version 0.5- 7. Available: CRAN. R-project. org/package= R2jags.(September 2015). Thornton D. H., Branch L. C., Sunquist M. E. (2011). The influence of landscape, patch, and within-patch factors on species presence and abundance: a review of focal patch studies. Landscape Ecology, 26(1), 7-18. https://doi.org/10.1007/s10980-010-9549-z Tingley M. W., Koo M. S., Moritz C., Rush A. C., Beissinger S. R. (2012). The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Global Change Biology, 18(11), 3279-3290. https://doi.org/10.1111/j.1365- 2486.2012.02784.x Van Der Hammen T., Rangel J. O. (1997). El estudio de la vegetación en Colombia (Recuento histórico-tareas futuras). Colombia diversidad biótica II, 17-57. Vellend M., Lilley P. L., Starzomski B. M. (2008). Using subsets of species in biodiversity surveys. Journal of Applied Ecology, 45(1), 161-169. https://doi.org/10.1111/j.1365-2664.2007.01413.x Weibull A. C., Östman Ö., Granqvist Å. (2003). Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodiversity & Conservation, 12(7), 1335-1355. https://doi.org/10.1023/A:1023617117780 Freeman B. G., Beehler B. M. (2018). Limited support for the “abundant centre” hypothesis in birds along a tropical elevational gradient: Implications for the fate of lowland tropical species in a warmer future. Journal of Biogeography, 45(8), 1884-1895. https://doi.org/10.1111/jbi.13370 Ralph C., Geupel G., Pyle P., Martin T., DeSante D., Milá B. (1996). Manual de métodos de campo para el monitoreo de aves terrestres. USDA, Forest Service: General Technical Report PSW-GTR-159. Pacific Southwest Research Station, Albany, California, USA. Whelan C. J., Wenny D. G., Marquis R. J. (2008). Ecosystem services provided by birds. Annals of the New York academy of sciences, 1134(1), 25-60. https://doi.org/10.1196/annals.1439.003. Catenazzi A., Lehr E., Vredenburg V. T. (2014). Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes. Conservation Biology, 28(2), 509-517. https://doi.org/10.1111/cobi.12194 Yamaura Y., Andrew Royle J., Kuboi K., Tada T., Ikeno S., Makino S. I. (2011). Modelling community dynamics based on species‐level abundance models from detection/nondetection data. Journal of applied ecology, 48(1), 67-75. https://doi.org/10.1111/j.1365-2664.2010.01922.x Zipkin E. F., DeWan A., Andrew Royle J. (2009). Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling. Journal of Applied Ecology, 46(4), 815-822. https://doi.org/10.1111/j.1365-2664.2009.01664.x García-Monroy J. S., Morales-González Ó. E., Carvajal‐Cogollo J. E. (2020). New bird records for the Serranía de Las Quinchas, Colombia: inventory update and comments on distributions in an altitudinal gradient. Check List, 16, 1475. https://doi.org/10.15560/16.6.1475 Gaüzère P., Princé K., Devictor V. (2017). Where do they go? The effects of topography and habitat diversity on reducing climatic debt in birds. Global Change Biology, 23(6), 2218-2229. https://doi.org/10.1111/gcb.13500 Gómez C., Gómez-Bahamón V., Cárdenas-Ortíz L., Bayly N. J. (2015). Distribution of Nearctic-Neotropical migratory birds along a South American elevation gradient during spring migration. The Wilson journal of ornithology, 127(1), 72-86. https://doi.org/10.1676/14-017.1 Graham C. H., Silva N., Velásquez‐Tibatá J. (2010). Evaluating the potential causes of range limits of birds of the Colombian Andes. Journal of Biogeography, 37(10), 1863-1875. https://doi.org/10.1111/j.1365-2699.2010.02356.x Granados-Peña R. E. (2013). Diversidad taxonómica, funcional y filogenética de mamíferos en Colombia (Doctoral dissertation, Universidad Nacional de Colombia Sede Medellín). Grytnes J. A., Heegaard E., Ihlen P.G. (2006) Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecologica 29: 241–246. https://doi.org/10.1016/j.actao.2005.10.007 Rangel-Ch J. O. (1991). Vegetación y ambiente en tres gradientes montañosos de Colombia. Tesis de Doctor. Universidad de Amsterdam, Holanda. Hanz D. M., Böhning‐Gaese K., Ferger S. W., Fritz S. A., Neuschulz E. L., Quitián M., Schleuning M. (2019). Functional and phylogenetic diversity of bird assemblages are filtered by different biotic factors on tropical mountains. Journal of Biogeography, 46(2), 291-303. https://doi.org/10.1111/jbi.13489 Hawkins A. (1999). Altitudinal and latitudinal distribution of east Malagasy forest bird communities. Journal of Biogeography, 26(3), 447-458. https://doi.org/10.1046/j.1365-2699.1999.00306.x Tingley M. W., Koo M. S., Moritz C., Rush A. C., Beissinger S. R. (2012). The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Global Change Biology, 18(11), 3279-3290. https://doi.org/10.1111/j.1365-2486.2012.02784.x Herzog S. K., Kattan G. H. (2011). Patterns of diversity and endemism in the birds of the tropical Andes. Climate change and biodiversity in the tropical Andes. Paris: McArthur Foundation, Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), 245-259. Hutchinson G. E. (1957). Concluding remarks. Cold Spring Harbor Symp. Quant. Biol. 22: 415-427. Jankowski J. E., Ciecka A. L., Meyer N. Y., Rabenold K. N. (2009). Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. Journal of Animal ecology, 78(2), 315-327. https://doi.org/10.1111/j.1365-2656.2008.01487.x Jankowski J. E., Merkord C. L., Rios W. F., Cabrera K. G., Revilla N. S., Silman M. R. (2013). The relationship of tropical bird communities to tree species composition and vegetation structure along an Andean elevational gradient. Journal of Biogeography, 40(5), 950-962. https://doi.org/10.1111/jbi.12041 Jankowski J. E., Robinson S. K., Levey D. J. (2010). Squeezed at the top: Interspecific aggression may constrain elevational ranges in tropical birds. Ecology, 91(7), 1877-1884. https://doi.org/10.1890/09-2063.1 Janzen D. H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101(919), 233-249. https://doi.org/10.1086/282487 Jost L. (2006). Entropy and diversity. Oikos, 113(2), 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x Rangel-Ch J. O., Velázquez A. (1997). Métodos de estudio de la vegetación. Colombia diversidad biótica II. Tipos de vegetación en Colombia, 59-82. Jost L. (2007) Partitioning diversity into independent alpha and beta components. Ecology, 88, 2427–2439. https://doi.org/10.1890/06-1736.1 Karger D. N., Kluge J., Krömer T., Hemp A., Lehnert M., Kessler M. (2011). The effect of area on local and regional elevational patterns of species richness. Journal of Biogeography, 38(6), 1177-1185. https://doi.org/10.1111/j.1365- 2699.2010.02468.x Karr J. R. (1976). Within‐and between‐habitat avian diversity in African and Neotropical lowland habitats. Ecological Monographs, 46(4), 457-481. https://doi.org/10.2307/1942566 Ulrich W., Soliveres S., Maestre F. T., Gotelli N. J., Quero J. L., Delgado‐Baqueriz M., Gozalo B. (2014). Climate and soil attributes determine plant species turnover in global drylands. Journal of Biogeography, 41(12), 2307-2319. https://doi.org/10.1111/jbi.12377 Kattan G. H. (1992). Rarity and vulnerability: the birds of the Cordillera Central of Colombia. Conservation Biology, 6(1), 64-70. https://doi.org/10.1046/j.1523- 1739.1992.610064.x Kattan G. H., Franco P. (2004). Bird diversity along elevational gradients in the Andes of Colombia: area and mass effects. Global Ecology and Biogeography 13(5), 451-458. https://doi.org/10.1111/j.1466-822X.2004.00117.x Kattan G. H., Franco P., SAAVEDRA‐RODRÍGUEZ C. A., Valderrama C., Rojas V., Osorio D., Martínez J. (2006). Spatial components of bird diversity in the Andes of Colombia: implications for designing a regional reserve system. Conservation Biology, 20(4), 1203-1211. https://doi.org/10.1111/j.1523- 1739.2006.00402.x La Sorte F. A., Butchart S. H., Jetz W., Böhning-Gaese K. (2014). Range-wide latitudinal and elevational temperature gradients for the world's terrestrial birds: implications under global climate change. PLoS One, 9(5), e98361. https://doi.org/10.1371/journal.pone.0098361 Laverde-R O., Stiles F. G., Múnera-R C. (2005). Nuevos registros e inventario de la avifauna de la serranía de las quinchas, un área importante para la conservación de las aves (AICA) en Colombia/New records and updated inventory of the avifauna of the Serranía de las Quinchas, an important bird area (IBA) in Colombia. Caldasia, 247-265. Li N., Chu H., Qi Y., Li C., Ping X., Sun Y., Jiang Z. (2019). Alpha and beta diversity of birds along elevational vegetation zones on the southern slope of Altai Mountains: Implication for conservation. Global Ecology and Conservation, 19, e00643. https://doi.org/10.1016/j.gecco.2019.e00643 Remsen J. V., Jr., J. I. Areta., E. Bonaccorso., S. Claramunt., A. Jaramillo., J. F. Pacheco., M. B. Robbins., F. G. Stiles., D. F. Stotz., K. J. Zimmer. Version [2020]. A classification of the bird species of South America. American Ornithological Society. http://www.museum.lsu.edu/~Remsen/SACCBaseline.htm Llano-Mejía J., Cortés-Góme Á. M., Castro-Herrera F. (2010). Lista de anfibios y reptiles del departamento del Tolima, Colombia. Biota colombiana, 11(1 y 2). Loiselle B. A., Blake J. G. (1991). Temporal variation in birds and fruits along an elevational gradient in Costa Rica. Ecology, 72(1), 180-193. https://doi.org/10.2307/1938913 Lomolino M. V. (2001). Elevation gradients of species‐density: historical and prospective views. Global Ecology and biogeography 10(1), 3-13. https://doi.org/10.1046/j.1466-822x.2001.00229.x Lutz F. E. (1921). Geographic average, a suggested method for the study of distribution: By Order of the Trustees of American Museum of Natural History. Van Der Hammen T., Rangel J. O. (1997). El estudio de la vegetación en Colombia (Recuento histórico-tareas futuras). Colombia diversidad biótica II, 17- 57. MacArthur R. H. (1972). 1972: Geographical ecology. New York: Harper & Row. MacArthur R. H., & MacArthur, J. W. (1961). On bird species diversity. Ecology, 42(3), 594-598. https://doi.org/10.2307/1932254 MacArthur R. H., & MacArthur, J. W. (1961). On bird species diversity. Ecology, 42(3), 594-598. https://doi.org/10.2307/1932254 Magurran A. E. (1988). Ecological diversity and its measurement. Princeton university press. Martin P. S. (1958) A biogeography of reptiles and amphibians in the Gomez Farias region. Tamaulipas, Mexico. Miscellaneous Publications of the Museum of Zoology, University of Michigan. Ruggiero A., and Hawkins B. A. (2008). Why do mountains support so many species of birds?. Ecography, 31(3), 306-315. https://doi.org/10.1111/j.0906- 7590.2008.05333.x McCain C. M. (2004). The mid‐domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. Journal of Biogeography, 31(1), 19-31. https://doi.org/10.1046/j.0305-0270.2003.00992.x McGill B. J., Enquist B. J., Weiher E., Westoby M. (2006). Rebuilding community ecology from functional traits. Trends in ecology, 21(4), 178-185. https://doi.org/10.1016/j.tree.2006.02.002 Melo A. S., Rangel T. F. L., Diniz‐Filho J. A. F. (2009). Environmental drivers of beta‐diversity patterns in New‐World birds and mammals. Ecography, 32(2), 226- 236. https://doi.org/10.1111/j.1600-0587.2008.05502.x Men J. L., Pacheco V. (2020). Mountains and traits: environmental heterogeneity and mammal assemblages along an elevational gradient in the Northern Andes. Studies on Neotropical Fauna and Environment, 1-13. https://doi.org/10.1080/01650521.2020.1851345 Meynard C. N., Devictor V., Mouillot D., Thuiller W., Jiguet F., Mouquet, N. (2011). Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France?. Global Ecology and Biogeography, 20(6), 893-903. https://doi.org/10.1111/j.1466-8238.2010.00647.x Wake D. B., Papenfuss T. J., Lynch J. F. (1992) Distribution of salamanders along elevational transects in Mexico and Guatamala. Tulane Studies in Zoology & Botany 1(suppl): 303–319. Meynard C. N., Devictor V., Mouillot D., Thuiller W., Jiguet F., Mouquet, N. (2011). Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France?. Global Ecology and Biogeography, 20(6), 893-903. https://doi.org/10.1111/j.1466-8238.2010.00647.x gradients. Global Ecology and Biogeography, 29(2), 232-245. https://doi.org/10.1111/geb.13021 Montes C., Silva C. A., Bayona G. A., Villamil R., Stiles E., Rodriguez-Corcho A. F., von Quadt A. (2021). A Middle to late Miocene trans-Andean portal: Geologic record in the Tatacoa Desert. Frontiers in Earth Science, 643. https://doi.org/10.3389/feart.2020.587022 Montes C., Silva C. A., Bayona G. A., Villamil R., Stiles E., Rodriguez-Corcho A. F., von Quadt A. (2021). A Middle to late Miocene trans-Andean portal: Geologic record in the Tatacoa Desert. Frontiers in Earth Science, 643. https://doi.org/10.3389/feart.2020.587022 Moreno C. E. (2001). Métodos para medir la biodiversidad. M&T–Manuales y Tesis SEA, vol. 1. Zaragoza, 84(922495), 2. Sam, K., Koane, B, Bardos, D. C. Jeppy, S. and Novotny, V. (2019). Species richness of birds along a complete rain forest elevational gradient in the tropics: Habitat complexity and food resources matter. Journal of Biogeography, 46(2), 279-290. https://doi.org/10.1111/jbi.13482 Múnera C., Franco A., Renjifo L., Valencia I., Quiceno M., Polanco H. (2002). Caracterización biológica del occidente del departamento de Boyacá. Especies amenazadas de la Serranía de las quinchas. Informe final para CorpoBoyacá . Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, DC. Nanda S. A., Reshi Z. A., Lone B. A., Mir S. A. (2018). Taxonomic and functional plant diversity patterns along an elevational gradient through treeline ecotone in Kashmir. Tropical Ecology, 59(2). Navarro S. A. G. (1992). Altitudinal Distribution of Birds in the Sierra Madre Del Sur, Guerrero, Mexico. The Condor, 94(1), 29-39. http://doi.org/10.2307/1368793 Navas C. A. (2002). Herpetological diversity along Andean elevational gradients: links with physiological ecology and evolutionary physiology. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 133(3), 469-485. https://doi.org/10.1016/S1095-6433(02)00207-6 Nogués-Bravo D., Araújo M. B., Romdal T., Rahbek, C. (2008). Scale effects and human impact on the elevational species richness gradients. Nature, 453(7192), 216-219. https://doi.org/10.1038/nature06812 Pan X., Ding Z., Hu Y., Liang J., Wu Y., Si X., Jin K. (2016). Elevational pattern of bird species richness and its causes along a central Himalaya gradient, China. PeerJ, 4, e2636. https://doi.org/10.7717/peerj.2636 Whittaker R. H. (1972). Evolution and measurement of species diversity. Taxon, 21(2-3), 213-251. https://doi.org/10.2307/1218190 Pineda J. (1993). Boundary effects on the vertical ranges of deep-sea benthic species. Deep Sea Research Part I: Oceanographic Research Papers, 40(11- 12), 2179-2192. https://doi.org/10.1016/0967-0637(93)90097-M Poulsen M. K., Lambert F. R. (2000). Altitudinal distribution and habitat preferences of forest birds on Halmahera and Buru, Indonesia: implications for conservation of Moluccan avifaunas. Ibis, 142(4), 566-586. https://doi.org/10.1111/j.1474-919X.2000.tb04457.x Quintero I., Jetz W. (2018). Global elevational diversity and diversification of birds. Nature, 555(7695), 246–250. https://doi.org/10.1038/nature25794 Santillán, V., Quitián, M. Tinoco, B. A. Zárate, E. Schleuning, M. Böhning-Gaese, K. and Neuschulz, E. L. (2020). Direct and indirect effects of elevation, climate and vegetation structure on bird communities on a tropical mountain. Acta Oecologica, 102, 103500. https://doi.org/10.1016/j.actao.2019.103500 Rahbek C. (1995). The elevational gradient of species richness: a uniform pattern? Ecography, 18(2), 200-205. Rahbek C. (1997). The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, 149(5), 875-902. https://doi.org/10.1086/286028 Rahbek C. (2005). The role of spatial scale and the perception of large‐scale species‐richness patterns. Ecology letters, 8(2), 224-239. https://doi.org/10.1111/j.1461-0248.2004.00701.x Rahbek C., Graves G. R. (2001). Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences, 98(8), 4534-4539. https://doi.org/10.1073/pnas.071034898 Rangel T. F., Diniz‐Filho J. A. (2005). Neutral community dynamics, the mid‐ domain effect and spatial patterns in species richness. Ecology letters, 8(8), 783- 790. https://doi.org/10.1111/j.1461-0248.2005.00786.x Rahbek C., Borregaard M. K., Antonelli A., Colwell R. K., Holt B. G., NoguesBravo D., Fjeldså J. (2019). Building mountain biodiversity: Geological and evolutionary processes. Science, 365(6458), 1114-1119. https://doi.org/10.1126/science.aax0151 Rangel-Ch J. O. (1991). Vegetación y ambiente en tres gradientes montañosos de Colombia. Tesis de Doctor. Universidad de Amsterdam, Holanda. Williams N. M., Crone E. E., T’ai H. R., Minckley R. L., Packer L., Potts S. G. (2010). Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation, 143(10), 2280-2291. https://doi.org/10.1016/j.biocon.2010.03.024 Rangel-Ch J. O. (2015). La biodiversidad de Colombia: significado y distribución regional. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(151), 176-200. Rapoport E. H. (1975). Aerografía: estrategias geográficas de las especies: Fondo de Cultura Económica México, MX. Cuatrecasas J. (1958). Aspectos de la vegetación natural de Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 10(40), 221-268. Reif J., Flousek J. (2012). The role of species’ ecological traits in climatically driven altitudinal range shifts of central European birds. Oikos, 121(7), 1053- 1060. https://doi.org/10.1111/j.1600-0706.2011.20008.x Reyes J. (2000). Lista de los corales (Cnidaria: Anthozoa: Scleractinia) de Colombia. Biota colombiana, 1(2), 164-176. Rodríguez G. M., Banda K., Reyes S. P., González A. C. E. (2012). Lista comentada de las plantas vasculares de bosques secos prioritarios para la conservación en los departamentos de Atlántico y Bolívar (Caribe colombiano. Biota colombiana, 13(2). Roman-Valencia C. (1990). Lista y distribución de peces en la cuenca media del río Atrato, Chocó, Colombia. Caldasia, 201-207. Sanders N. J., Rahbek C. (2012). The patterns and causes of elevational diversity gradients. Ecography, 35(1), 1-3. https://doi.org/10.1111/j.1600- 0587.2011.07338.x S Santillán V., Quitián M., Tinoco B. A., Zárate E., Schleuning M., Böhning-Gaese, K., Neuschulz E. L. (2019). Different responses of taxonomic and functional bird diversity to forest fragmentation across an elevational gradient. Oecologia, 189(4), 863-873. https://doi.org/10.1007/s00442-018-4309-x Santillán V., Quitián M., Tinoco B. A., Zárate E., Schleuning M., Böhning-Gaese K., Neuschulz E. L. J. P. o. (2018). Spatio-temporal variation in bird assemblages is associated with fluctuations in temperature and precipitation along a tropical elevational gradient. 13(5), e0196179. https://doi.org/10.1371/journal.pone.0196179 Santillán V., Quitián M., Tinoco B. A., Zárate E., Schleuning M., Böhning-Gaese K., Neuschulz E. L. (2020). Direct and indirect effects of elevation, climate and vegetation structure on bird communities on a tropical mountain. Acta Oecologica, 102, 103500. https://doi.org/10.1016/j.actao.2019.103500 Anderson, M. J., Ellingsen, K. E. and McArdle, B. H. (2006). Multivariate dispersion as a measure of beta diversity. Ecology letters, 9(6), 683-693. https://doi.org/10.1111/j.1461-0248.2006.00926.x Stevens G. C. (1992). The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. The American Naturalist, 140(6), 893- 911. https://doi.org/10.1086/285447 Storch D., Davies R. G., Zajíček S., Orme C. D. L., Olson V., Thomas G. H., Bennett P. M. (2006). Energy, range dynamics and global species richness patterns: reconciling mid‐domain effects and environmental determinants of avian diversity. Ecology letters, 9(12), 1308-1320. https://doi.org/10.1111/j.1461- 0248.2006.00984.x Stiles F. G. (2005). New records and updated inventory of the avifauna of the Serranía de las Quinchas, an important bird area (IBA) in Colombia. Caldasia, 27(2), 247-265. Stiles F. G., & Bohórquez, C. I. (2000). Evaluando el estado de la Biodiversidad: el caso de la avifauna de la Serranía de las Quinchas, Boyacá, Colombia. Caldasia, 22(1), 61-92. Balcázar-Vargas, M. P., Rangel-Ch, J. O. Linares-C E. L. (2000). Diversidad florística de la Serranía de las Quinchas, Magdalena medio (Colombia). Caldasia, 191-224. Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and biogeography, 19(1), 134-143. https://doi.org/10.1111/j.1466-8238.2009.00490.x Baselga, A. (2013). Multiple site dissimilarity quantifies compositional heterogeneity among several sites, while average pairwise dissimilarity may be misleading. Ecography, 36(2), 124-128. https://doi.org/10.1111/j.1600- 0587.2012.00124.x Chamberlain D., Brambilla M., Caprio E., Pedrini P., Rolando A. (2016). Alpine bird distributions along elevation gradients: the consistency of climate and habitat effects across geographic regions. Oecologia, 181(4), 1139-1150. https://doi.org/10.1007/s00442-016-3637-y Baselga, A., D Orme, S Villeger, J. D. Bortoli and F, Leprieur. 2018. betapart: partitioning beta diversity into turnover and nestedness components [available on internet at https://CRAN.R-project.org/package=betapart]. Accessed August 2018 Baselga, A., and Orme, C. D. L. (2012). betapart: an R package for the study of beta diversity. Methods in ecology and evolution, 3(5), 808-812. https://doi.org/10.1111/j.2041-210X.2012.00224.x Bastianelli, G., Tavecchia, G. Meléndez, L. Seoane, J. Obeso, J. R. Laiolo, P. (2017). Surviving at high elevations: an inter-and intra-specific analysis in a mountain bird community. Oecologia, 184(2), 293-303. https://doi.org/10.1007/s00442-017-3852-1 Bibby, C. J., Burgess, N. D. Hill, D. A. Mustoe, S. (2000). Bird census techniques: Elsevier. Scholer M. N., Arcese P., Puterman M. L., Londoño G. A., Jankowski J. E. (2019). Survival is negatively related to basal metabolic rate in tropical Andean birds. Functional Ecology, 33(8), 1436-1445. https://doi.org/10.1111/1365-2435.13375 Bini, L. M., Diniz‐Filho, J. A. F. Hawkins, B. A. (2004). Macroecological explanations for differences in species richness gradients: a canonical analysis of South American birds. Journal of Biogeography, 31(11), 1819-1827. https://doi.org/10.1111/j.1365-2699.2004.01126.x Blake, J. G., and Loiselle, B. A. (2000). Diversity of birds along an elevational gradient in the Cordillera Central, Costa Rica. The Auk, 117(3), 663-686. https://doi.org/10.1093/auk/117.3.663 Bohórquez, C. I. (2003). Mixed-species bird flocks in a montane cloud forest of Colombia. Ornitología Neotropical, 14, 67-78. Boyle, A. W., Sandercock, B. K. Martin, K. (2016). Patterns and drivers of intraspecific variation in avian life history along elevational gradients: a meta‐ analysis. Biological Reviews, 91(2), 469-482. https://doi.org/10.1111/brv.12180 Brawn, J. D., Benson, T. J. Stager, M. Sly, N. D. Tarwater, C. E. (2017). Impacts of changing rainfall regime on the demography of tropical birds. Nature Climate Change, 7(2), 133-136. https://doi.org/10.1038/nclimate3183 Caiyan L. Y. W. (2016). Registration and Clip Based on Latitude and Longitude Coordinates. Journal of Southwest University of Science and Technology (Natural Science Edition), 31(4), 63. Chao A., Gotelli N. J., Hsieh T., Sander E. L., Ma K., Colwell R. K., Ellison A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45-67. https://doi.org/10.1890/13-0133.1 Chao A., Gotelli N. J., Hsieh T., Sander E. L., Ma K., Colwell R. K., Ellison A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45-67. https://doi.org/10.1890/13-0133.1 Chao A., Jost L. (2012). Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93(12), 2533- 2547. https://doi.org/10.1890/11-1952.1 Chao A., Jost L. (2015). Estimating diversity and entropy profiles via discovery rates of new species. Methods in Ecology and Evolution, 6(8), 873-882. https://doi.org/10.1111/2041-210X.12349 Simaika, J. P., and Samways, M. J. (2015). Predicted range shifts of dragonflies over a wide elevation gradient in the southern hemisphere. Freshwater Science, 34(3), 1133-1143. https://doi.org/10.1086/682686 Chaparro-Herrera S., Echeverry-Galvis M. Á., Córdoba-Córdoba S., Sua-Becerra A. (2013). Listado actualizado de las aves endémicas y casi-endémicas de Colombia. Biota colombiana, 14(2). Chaparro-Herrera S., Lopera-Salazar A., Stiles F. G. (2018). Aves del departamento de Cundinamarca, Colombia: conocimiento, nuevos registros y vacíos de información. Biota colombiana, 19(1), 160-189. https://doi.org/10.21068/c2018.v19n01a11 Cifuentes-Sarmiento, Y., & Castillo, L. F. (2009). Colombia: informe anual. Censo Neotropical de Aves Acuáticas 2008. Clarke K. R., Gorley, R. N. (2006). Primer. PRIMER-e, Plymouth, 866. Cuervo A. M., Hernández-Jaramillo A., Cortés-Herrera J. O., Laverde O. (2007). Nuevos registros de aves en la parte alta de la Serranía de las Quinchas, Magdalena Medio, Colombia. Ornitología Colombiana, 5, 94-98. Dar A. A., Jamal K., Shah M. S., Ali M., Sayed S., Gaber A., Salah M. (2022). Species richness, abundance, distributional pattern and trait composition of butterfly assemblage change along an altitudinal gradient in the Gulmarg region of Jammu & Kashmir, India. Saudi Journal of Biological Sciences, 29(4), 2262- 2269. https://doi.org/10.1016/j.sjbs.2021.11.066 Etter A. (1998). Bosque húmedo tropical. Informe nacional sobre el estado de la diversidad. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, PNUMA, Ministerio del Medio Ambiente. Bogotá, Colombia, 106-133. Chaparro-Herrera S., Echeverry-Galvis M. Á., Córdoba-Córdoba S., Sua-Becerra A. (2013). Listado actualizado de las aves endémicas y casi-endémicas de Colombia. Biota colombiana, 14(2). Fick S. E., Hijmans R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology, 37(12), 4302- 4315. https://doi.org/10.1002/joc.5086 Fjeldså J., Bowie R. C., Rahbek C. (2012). The role of mountain ranges in the diversification of birds. Annual Review of Ecology, Evolution, and Systematics, 43, 249-265. https://doi.org/10.1146/annurev-ecolsys-102710-145113 Siqueira C. C., and Rocha C. F. D. (2013). Altitudinal gradients: concepts and implications on the biology, the distribution and conservation of Anurans. Oecologia Australis, 17(2), 282-302. http://dx.doi.org/10.4257/oeco.2013.1702.09 García-Monroy J. S., Morales-González Ó. E., Carvajal‐Cogollo J. E. (2020). New bird records for the Serranía de Las Quinchas, Colombia: inventory update and comments on distributions in an altitudinal gradient. Check List, 16, 1475. https://doi.org/10.15560/16.6.1475 García‐Navas V., Sattler T., Schmi, H., Ozgul A. (2020). Temporal homogenization of functional and beta diversity in bird communities of the Swiss Alps. Diversity and Distributions, 26(8), 900-911. https://doi.org/10.1111/ddi.13076 Gómez C., Tenorio E. A., Montoya P., Cadena C. D. (2016). Niche-tracking migrants and niche-switching residents: evolution of climatic niches in New World warblers (Parulidae). Proceedings of the Royal Society B: Biological Sciences, 283(1824), 20152458. https://doi.org/10.1098/rspb.2015.2458 Hamel P., Smith W., Twedt D., Woehr J., Morris E., Hamilton R., Cooper R. (1996). A land manager’s guide to point counts in the southeast. US Department of Agriculture, Forest Service, General Technical Report SO-120. Hamilton, H., Smyth, R. L. Young, B. E. Howard, T. G. Tracey, C. Breyer, S. ... and Schloss, C. (2022). Increasing taxonomic diversity and spatial resolution clarifies opportunities for protecting imperiled species in the US. Ecological Applications, e2534. https://doi.org/10.1002/eap.2534 Hernández-Camacho J., R Ortiz Q., T Walshburger., A Hurtado G. (1992). Estado de la Biodiversidad en Colombia. Págs. 41-225 en G. Halffter (ed.). La diversidad biológica de Iberoamérica I. Acta Zoológica Mexicana. Volumen Especial, México. Herzog S. K., Kattan G. H. (2011). Patterns of diversity and endemism in the birds of the tropical Andes. Climate change and biodiversity in the tropical Andes. Paris: McArthur Foundation, Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), 245-259. Herzog S. K., Kessler M., Bach K. (2005). The elevational gradient in Andean bird species richness at the local scale: a foothill peak and a high‐elevation plateau. Ecography, 28(2), 209-222. https://doi.org/10.1111/j.0906- 7590.2005.03935.x Cody M. L. (1970). Chilean bird distribution. Ecology, 51(3), 455-464. https://doi.org/10.2307/1935380 Hilty S., and Brown W. (1986). Birds of Colombia: 54. Princeton, Princenton University. Stein, A., Gerstner, K., & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology letters, 17(7), 866-880. https://doi.org/10.1111/ele.12277 Howe R. W., Niemi G. J., Lewis S. J., Welsh D. A. (1997). A standard method for monitoring songbird populations in the Great Lakes region. Passenger Pigeon, 59(3), 183-194. Hsieh T. C., Ma K. H., Chao A. (2020). iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0. 20 URL. Hsieh T., Ma K., Chao A. (2013). iNEXT online: interpolation and extrapolation (Version 1.0)[Software]. Available online at: Available online at: http://chao. stat. nthu. edu. tw/blog/software-downlod/(downloaded September 2, 2019). Hutto R. L., Pletschet S. M., Hendricks P. (1986). A fixed-radius point count method for nonbreeding and breeding season use. The Auk, 103(3), 593-602. https://doi.org/10.1093/auk/103.3.593 Izquierdo A. E., Carilla J., Nieto C., Osinaga Acosta O., Martin E., Grau H. R., Reynaga M. C. (2020). Multi-taxon patterns from high Andean peatlands: assessing climatic and landscape variables. Community Ecology, 21(3), 317-332. https://doi.org/10.1007/s42974-020-00029-0 Janzen D. H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101(919), 233-249. https://doi.org/10.1086/282487 Janzen D. H. (1973). Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology, 54(3), 687-708. https://doi.org/10.2307/1935359 Jones H. H., Barreto E., Murillo O., Robinson S. K. (2021). Turnover-driven loss of forest-dependent species changes avian species richness, functional diversity, and community composition in Andean forest fragments. Global Ecology and Conservation, 32, e01922. https://doi.org/10.1016/j.gecco.2021.e01922 Karp D. S., Frishkoff L. O., Echeverri A., Zook J., Juarez P., Chan K. M. (2018). Agriculture erases climate‐driven β‐diversity in Neotropical bird communities. Global Change Biology, 24(1), 338-349. https://doi.org/10.1111/gcb.13821 Colwell R. K., Hurtt G. C. (1994). Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144(4), 570-595. https://doi.org/10.1086/285695 Stiles F. G. (1998). Las aves endémicas de Colombia. Informe nacional sobre el estado de la biodiversidad en Colombia, 1, 378-385. Kattan G. H., Franco P. (2004). Bird diversity along elevational gradients in the Andes of Colombia: area and mass effects. Global Ecology and Biogeography, 13(5), 451-458. https://doi.org/10.1111/j.1466-822X.2004.00117.x Kureel, N., Sarup, J., Matin, S., Goswami, S., & Kureel, K. (2022). Modelling vegetation health and stress using hypersepctral remote sensing data. Modeling Earth Systems and Environment, 8(1), 733-748. https://doi.org/10.1007/s40808- 021-01113-8 Larsen T. H., Brehm G., Navarrete H., Franco P., Gomez H., Mena J. L., Canhos V. (2011). Range shifts and extinctions driven by climate change in the tropical Andes: synthesis and directions. Climate change and biodiversity in the tropical Andes, 47-67. Latta S. C., Rimmer C. C., McFarland K. P. (2003). Winter bird communities in four habitats along an elevational gradient on Hispaniola. The Condor, 105(2), 179-197. https://doi.org/10.1093/condor/105.2.179 Laverde-R, O. A., Stiles, F. G., & Múnera Roldan, C. (2005). Nuevos registros e inventario de la avifauna de la Serranía de las Quinchas, un área importante para la conservación de las aves (AICA) en Colombia. Caldasia, 27(2), 247-265. Legendre P., and Legendre L. (2012). Canonical analysis. In Developments in Environmental Modelling (Vol. 24, pp. 625-710). Elsevier. https://doi.org/10.1016/B978-0-444-53868-0.50011-3 Li N., Chu H., Qi Y., Li C., Ping X., Sun Y., Jiang Z. (2019). Alpha and beta diversity of birds along elevational vegetation zones on the southern slope of Altai Mountains: Implication for conservation. Global Ecology and Conservation, 19, e00643. https://doi.org/10.1016/j.gecco.2019.e00643 Lomolino M. V. (2001). Elevation gradients of species‐density: historical and prospective views. Global Ecology and biogeography, 10(1), 3-13. https://doi.org/10.1046/j.1466-822x.2001.00229.x MacArthur R. H. (1972). Geographical ecology–Harper and Row. New York. McCain C. M. (2009). Global analysis of bird elevational diversity. Global Ecology and Biogeography 18(3), 346-360. https://doi.org/10.1111/j.1466- 8238.2008.00443.x Stiles F. G. (2005). Nuevos registros e inventario de la avifauna de la Serranía de las Quinchas, un área importante para la conservación de las aves (AICA) en Colombia. Caldasia, 27(2), 247-265. Colwell R. K., Lees D. C. (2000). The mid-domain effect: geometric constraints on the geography of species richness. Trends in ecology & evolution, 15(2), 70- 76. https://doi.org/10.1016/S0169-5347(99)01767-X Montes C., Silva C. A., Bayona G. A., Villamil R., Stiles E., Rodriguez-Corcho A. F., ... von Quadt A. (2021). A Middle to late Miocene trans-Andean portal: Geologic record in the Tatacoa Desert. Frontiers in Earth Science, 643. https://doi.org/10.3389/feart.2020.587022 Morante‐Filho J. C., Arroyo‐Rodríguez V., Faria D. (2016). Patterns and predictors of β‐diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds. Journal of Animal Ecology, 85(1), 240-250. https://doi.org/10.1111/1365-2656.12448 Nanda S. A., Haq M. U., Singh S. P., Reshi Z. A., Rawal R. S., Kumar D., ... Pandey A. (2021). Species richness and β-diversity patterns of macrolichens along elevation gradients across the Himalayan Arc. Scientific Reports, 11(1), 1- 15. https://doi.org/10.1038/s41598-021-99675-1 Ohlson, J., Fjeldså, J., & Ericson, P. G. (2008). Tyrant flycatchers coming out in the open: phylogeny and ecological radiation of Tyrannidae (Aves, Passeriformes). Zoologica Scripta, 37(3), 315-335. https://doi.org/10.1111/j.1463-6409.2008.00325.x Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., ... Wagner H. (2019). Vegan: community ecology package (version 2.5-6). The Comprehensive R Archive Network. Pezda, A. M., Jacoboski, L. I., Luza, A. L., & Hartz, S. M. (2021). Bird betadiversity of tree plantations and natural forests immersed within a grassy landscape in southern Brazil. Ornithology Research, 29(3), 123-132. https://doi.org/10.1007/s43388-021-00064-z Poulin B., Lefebvre G., McNeil R. (1992). Tropical avian phenology in relation to abundance and exploitation of food resources. Ecology, 73(6), 2295-2309. https://doi.org/10.2307/1941476 Qian H., Wang X. Zhang Y. (2012). Comment on ‘Disentangling the drivers of beta diversity along latitudinal and elevational gradients’. Science, 335, 1573-b. Quintero, J. A., & Tejada, M. L. (2020). Time to depth conversion: Velocity modelling in the Llanos Basin, Onshore Colombia. Journal of South American Earth Sciences, 100, 102557. https://doi.org/10.1016/j.jsames.2020.102557 Stiles F. G., Bohórquez C. I. (2000). Evaluando el estado de la Biodiversidad: el caso de la avifauna de la Serranía de las Quinchas, Boyacá, Colombia. Caldasia, 22(1), 61-92. Rahbek C. (1995). The elevational gradient of species richness: a uniform pattern?. Ecography, 200-205. Colwell R. K., Rahbek C., Gotelli N. J. (2004). The mid-domain effect and species richness patterns: what have we learned so far? The American Naturalist, 163(3), E1-E23. https://doi.org/10.1086/382056 Rahbek C. (1997). The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, 149(5), 875-902. https://doi.org/10.1086/286028 Terborgh J. (1971). Distribution on environmental gradients: theory and a preliminary interpretation of distributional patterns in the avifauna of the Cordillera Vilcabamba, Peru. Ecology, 52(1), 23-40. https://doi.org/10.2307/1934735 Terborgh J. (1977). Bird species diversity on an Andean elevational gradient. Ecology, 58(5), 1007-1019. https://doi.org/10.2307/1936921 Van Der Hammen T., Rangel J. O. (1997). El estudio de la vegetación en Colombia (Recuento histórico-tareas futuras). Colombia diversidad biótica II, 17- 57. Stotz D. F., Fitzpatrick J. W., Parker III T. A., Moskovits D. K. (1996). Neotropical birds: ecology and conservation: University of Chicago Press. Cuervo A. M., Hernández-Jaramillo A., Cortés-Herrera J. O., Laverde O. (2007). Nuevos registros de aves en la parte alta de la Serranía de las Quinchas, Magdalena Medio, Colombia. Ornitología Colombiana, 5, 94-98. Walther B. A., Chen J. R. J., Lin H. S., Sun Y. H. (2017). The effects of rainfall, temperature, and wind on a community of montane birds in Shei-Pa National Park, Taiwan. Zoological studies, 56. https://doi.org/10.6620/ZS.2017.56-23 Wretenberg J., Pärt T., Berg Å. (2010). Changes in local species richness of farmland birds in relation to land-use changes and landscape structure. Biological conservation, 143(2), 375-381. https://doi.org/10.1016/j.biocon.2009.11.001 Zador M., Young B. E., Josse C., Stern M., Vasconez S., Olander J., ... Hak J. (2015). Ecosystem profile: Tropical Andes biodiversity hotspot. Critical Ecosystem Partnership Fund. Zellweger F., Roth T., Bugmann H., Bollmann K. (2017). Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure. Global Ecology and Biogeography, 26(8), 898-906. https://doi.org/10.1111/geb.12598 Zhang, Q., Holyoak, M., Chen, C., Liu, Z., Liu, J., Che, X., ... & Zou, F. (2020). Trait‐mediated filtering drives contrasting patterns of species richness and functional diversity across montane bird assemblages. Journal of Biogeography, 47(1), 301-312. https://doi.org/10.1111/jbi.13738 Abreu T. L., Berg S. B., de Faria I. P., Gomes L. P., Marinho‐Filh, J. S., Colli G. R. (2020). River dams and the stability of bird communities: A hierarchical Bayesian analysis in a tropical hydroelectric power plant. Journal of Applied Ecology, 57(6), 1124-1136. https://doi.org/10.1111/1365-2664.13607 Andrade-Ponce G., Cepeda-Duque J. C., Mandujano S., Velásquez-C K. L., Lizcano D. J., Gómez-Valencia, B. (2021). Modelos de ocupación para datos de cámaras trampa. Mammalogy Notes, 7(1), 200-200. https://doi.org/10.47603/mano.v7n1.200 Bajaru S. B., Kulavmode A. R., Manakadan R. (2019). Influence of microhabitat and landscape-scale factors on the richness and occupancy of small mammals in the northern Western Ghats: A multi-species occupancy modeling approach. Mammalian Biology, 99, 88-96. https://doi.org/10.1016/j.mambio.2019.10.003 Balcázar-Vargas M. P., Rangel-Ch J. O., Linares-C E. L. (2000). Diversidad florística de la Serranía de las Quinchas, Magdalena medio (Colombia). Caldasia, 191-224. Terborgh J. (1971). Distribution on environmental gradients: theory and a preliminary interpretation of distributional patterns in the avifauna of the Cordillera Vilcabamba, Peru. Ecology, 52(1), 23-40. https://doi.org/10.2307/1934735 Bilous L. F., Shyshchenco P., Samoilenko V., Havrylenko O. (2020). Spatial morphometric analysis of digital elevation model in landscape research. In Geoinformatics: Theoretical and Applied Aspects 2020 (Vol. 2020, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214- 4609.2020geo124 Currie D. J., Mittelbach G. G., Cornell H. V., Field R., Guégan J. F., Hawkins B. A., O'Brien E. (2004). Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness. Ecology letters, 7(12), 1121-1134. https://doi.org/10.1111/j.1461-0248.2004.00671.x Bini L. M., Diniz‐Filho J. A. F., Hawkins B. A. (2004). Macroecological explanations for differences in species richness gradients: a canonical analysis of South American birds. Journal of Biogeography, 31(11), 1819-1827. https://doi.org/10.1111/j.1365- 2699.2004.01126.x Boucher‐Lalonde V., Morin A., Currie D. J. (2014). A consistent occupancy–climate relationship across birds and mammals of the Americas. Oikos, 123(9), 1029-1036. https://doi.org/10.1111/oik.01277 Boulinier T., Nichols J. D., Hines J. E., Sauer J. R., Flather C. H., Pollock K. H. (2001). Forest fragmentation and bird community dynamics: inference at regional scales. Ecology, 82(4), 1159-1169. https://doi.org/10.1890/0012- 9658(2001)082[1159:FFABCD]2.0.CO;2 Caiyan L. Y. W. 2016. Registration and Clip Based on Latitude and Longitude Coordinates. Journal of Southwest University of Science and Technology (Natural Science Edition), 31(4), 63. Cam E., Nichols J. D., Sauer J. R., Hines J. E. (2002). On the estimation of species richness based on the accumulation of previously unrecorded species. Ecography, 25(1), 102-108. https://doi.org/10.1034/j.1600-0587.2002.250112.x Catalan J., Ninot J. M., Aniz M. M. (2017). High Mountain conservation in a changing world. In Advances in global change research (p.62). Berlin, Germany: Springer Open. Céspedes Arias L. N., Wilson S., Bayly N. J. (2022). Community modeling reveals the importance of elevation and land cover in shaping migratory bird abundance in the Andes. Ecological Applications, 32(1), e02481. https://doi.org/10.1002/eap.2481 Connell J. H. (1978). Diversity in tropical rain forests and coral reefs: high diversity of trees and corals is maintained only in a nonequilibrium state. Science, 199(4335), 1302-1310. https://doi.org/10.1126/science.199.4335.1302 Terborgh J. (1977). Bird species diversity on an Andean elevational gradient. Ecology, 58(5), 1007-1019. https://doi.org/10.2307/1936921 Devarajan K., Morelli T. L., Tenan S. (2020). Multi‐species occupancy models: review, roadmap, and recommendations. Ecography. https://doi.org/10.1111/ecog.04957 Dorazio R. M., Royle J. A. (2005). Estimating size and composition of biological communities by modeling the occurrence of species. Journal of the American Statistical Association, 100(470), 389-398. https://doi.org/10.1198/016214505000000015 Ellis E. C. (2015). Ecology in an anthropogenic biosphere. Ecological Monographs, 85(3), 287-331. https://doi.org/10.1890/14-2274.1 Etter A. (1998). Bosque húmedo tropical. Informe nacional sobre el estado de la diversidad. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, PNUMA, Ministerio del Medio Ambiente. Bogotá, Colombia, 106-133. Fahrig L., Baudry J., Brotons L., Burel F. G., Crist T. O., Fuller R. J., Martin J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology letters, 14(2), 101-112. https://doi.org/10.1111/j.1461- 0248.2010.01559.x Fick S. E., Hijmans R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology, 37(12), 4302- 4315. https://doi.org/10.1002/joc.5086 Fjeldså J., Bowie R. C., Rahbek C. (2012). The role of mountain ranges in the diversification of birds. Annual Review of Ecology, Evolution, and Systematics, 43, 249-265. https://doi.org/10.1146/annurev-ecolsys-102710-145113 García-Monroy J. S., Morales-González Ó. E., Carvajal‐Cogollo J. E. (2020). New bird records for the Serranía de Las Quinchas, Colombia: inventory update and comments on distributions in an altitudinal gradient. Check List, 16, 1475. https://doi.org/10.15560/16.6.1475 Gaston K. J., Blackburn T. M., Greenwood J. J., Gregory R. D., Quinn R. M., Lawton J. H. (2000). Abundance–occupancy relationships. Journal of Applied Ecology, 37, 39-59. https://doi.org/10.1046/j.1365-2664.2000.00485.x Gelman A., Hill J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge university press. Terborgh J. (1985). The role of ecotones in the distribution of Andean birds. Ecology, 66(4), 1237-1246. https://doi.org/10.2307/1939177 Guillera‐Arroita G., Kéry M., Lahoz‐Monfort J. J. (2019). Inferring species richness using multispecies occupancy modeling: Estimation performance and interpretation. Ecology and Evolution, 9(2), 780-792. https://doi.org/10.1002/ece3.4821 Guisan A., Broennimann O., Buri A., Cianfrani C., D'Amen M., Di Cola V., Vittoz P. (2019). Climate change impacts on mountain biodiversity. In Biodiversity and climate change: transforming the biosphere (pp. 221-233). Yale University Press. Haffer J. (1967). Speciation in Colombian forest birds west of the Andes. Especiación en las aves de los bosques colombianos al occidente de los Andes. American Museum Novitates., (2294), 1-57. Enrique-Avendaño J., Isabel Bohórquez C., Rosselli L., Arzuza-Buelvas D., Estela F. A., Cuervo A. M., Miguel Renjifo L. (2017). Lista de chequeo de las aves de Colombia: Una síntesis del estado del conocimiento desde Hilty & Brown (1986). Ornitología Colombiana (16). Hernández-Camacho J., R Ortiz Q., T. Walshburger A. Hurtado G. (1992). Estado de la Biodiversidad en Colombia. Págs. 41-225 en G. Halffter (ed.). La diversidad biológica de Iberoamérica I. Acta Zoológica Mexicana. Volumen Especial, México. Husté A., Selmi S., Boulinier T. (2006). Bird communities in suburban patches near Paris: determinants of local richness in a highly fragmented landscape. Ecoscience, 13(2), 249-257. https://doi.org/10.2980/i1195-6860-13-2-249.1 Jackson H. B., Fahrig L. (2015). Are ecologists conducting research at the optimal scale?. Global Ecology and Biogeography, 24(1), 52-63. https://doi.org/10.1111/geb.12233 Kalton, G. (1968). Standardization: A technique to control for extraneous variables. Journal of the Royal Statistical Society: Series C (Applied Statistics), 17(2), 118-136. https://doi.org/10.2307/2985676 Kéry M., Royle J. A. (2009). Inference about species richness and community structure using species-specific occupancy models in the national Swiss breeding bird survey MHB. In Modeling demographic processes in marked populations (pp. 639-656): Springer. Kéry M., Royle J. A. (2015). Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS. Terborgh J., Weske J. S. (1975). The role of competition in the distribution of Andean birds. Ecology, 56(3), 562-576. https://doi.org/10.2307/1935491 Kéry M., Royle J. A. (2020). Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS: Volume 2: Dynamic and advanced models. Academic Press. Kraft N. J., Comita L. S., Chase J. M., Sanders N. J., Swenson N. G., Crist T. O., Myers J. A. (2011). Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science, 333(6050), 1755-1758. https://doi.org/10.1126/science.1208584 Kremen C., (1992). Assessing the indicator properties of species assemblages for natural areas monitoring. Ecol. Appl. 2, 203–217. https://doi.org/10.2307/1941776. Kureel N., Sarup J., Matin S., Goswami S., Kureel K. (2022). Modelling vegetation health and stress using hypersepctral remote sensing data. Modeling Earth Systems and Environment, 8(1), 733-748. https://doi.org/10.1007/s40808-021-01113-8 Fauth J., Bernardo J., Camara M., Resetarits Jr W., Van Buskirk J., McCollum S. (1996). Simplifying the jargon of community ecology: a conceptual approach. The American Naturalist, 147(2), 282-286. https://doi.org/10.1086/285850 Laverde O., Munera C., Renjifo L. M. (2005). Preferencia de hábitat por Capito hypoleucus, ave colombiana endémica y amenazada. Ornitología Colombiana, 3, 62-73. Lepczyk C. A., Flather C. H., Radeloff V. C., Pidgeon A. M., Hammer R. B., Liu J. (2008). Human impacts on regional avian diversity and abundance. Conservation biology, 22(2), 405-416. https://doi.org/10.1111/j.1523-1739.2008.00881.x Levin N., Shmida A., Levanoni O., Tamari H., Kark S. (2007). Predicting mountain plant richness and rarity from space using satellite‐derived vegetation indices. Diversity and Distributions, 13(6), 692-703. https://doi.org/10.1111/j.1472- 4642.2007.00372.x Lomolino M. V. (2001). Elevation gradients of species‐density: historical and prospective views. Global Ecology and biogeography 10(1), 3-13. https://doi.org/10.1046/j.1466-822x.2001.00229.x Manley P. N., Schlesinger M. D., Roth J. K., Van Horne B. (2005). A field‐based evaluation of a presence‐absence protocol for monitoring ecoregional‐scale biodiversity. The Journal of wildlife management, 69(3), 950-966. https://doi.org/10.2193/0022-541X(2005)069[0950:AFEOAP]2.0.CO;2 Texera W. A. (1973). Distribución y diversidad de mamíferos y aves en la provincia de magallanes. II Algunas notas ecológicas sobre los canales patagónicos. In Anales del Instituto de la Patagonia. Instituto de la Patagonia. McCain C. M. (2005). Elevational gradients in diversity of small mammals. Ecology, 86(2), 366-372. https://doi.org/10.1890/03-3147 McCain C. M. (2007). Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and biogeography, 16(1), 1-13. https://doi.org/10.1111/j.1466-8238.2006.00263.x McCain C. M. (2009). Global analysis of bird elevational diversity. Global Ecology and Biogeography 18(3), 346-360. https://doi.org/10.1111/j.1466-8238.2008.00443.x McCain C. M., & Grytnes, J. A. (2010). Elevational Gradients in Species Richness. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester. https://doi.org/10.1002/9780470015902.a0022548 McGrann M. C., & Furnas, B. J. (2016). Divergent species richness and vocal behavior in avian migratory guilds along an elevational gradient. Ecosphere, 7(8), e01419. https://doi.org/10.1002/ecs2.1419 Ficetola G. F., Mazel F., Thuiller W. (2017). Global determinants of zoogeographical boundaries. Nature Ecology & Evolution, 1(4), 0089. https://doi.org/10.1038/s41559-017-0089 Meynard C. N., Devictor V., Mouillot D., Thuiller W., Jiguet F., Mouquet, N. (2011). Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France?. Global Ecology and Biogeography, 20(6), 893-903. https://doi.org/10.1111/j.1466-8238.2010.00647.x Miguet P., Jackson H. B., Jackson N. D., Marti A. E., Fahrig L. (2016). What determines the spatial extent of landscape effects on species?. Landscape ecology, 31(6), 1177-1194. https://doi.org/10.1007/s10980-015-0314-1 Miller-Rushing A. J., Primac R. B., Sekercioglu, C. H. (2010). Conservation consequences of climate change for birds. Effects of climate change on birds, 295, 306. Mitchell M. G., Bennett E. M., Gonzalez A. (2014). Agricultural landscape structure affects arthropod diversity and arthropod-derived ecosystem services. Agriculture, Ecosystems & Environment, 192, 144-151. https://doi.org/10.1016/j.agee.2014.04.015 Tingley M. W., Monahan W. B., Beissinger S. R., Moritz C. (2009). Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Sciences, 106(Supplement 2), 19637-19643. https://doi.org/10.1073/pnas.0901562106 Múnera C., Laverde-R O. (2002). Uso de hábitat por Capito hypoleucus, una especie endémica y amenazada de Colombia (Aves: Capitonidae) (Doctoral dissertation, Tesis de pregrado. Departamento de Biología. Universidad Nacional de Colombia, Bogotá DC). Copyright (c) 2022 Universidad Pedagógica y Tecnológica de Colombia Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ info:eu-repo/semantics/openAccess Licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0) http://purl.org/coar/access_right/c_abf2 1 recurso en línea (105 páginas) : ilustraciones application/pdf application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia Facultad Ciencias Tunja Maestría en Ciencias Biológicas
spellingShingle Diversidad biológica - Serranía de las Quinchas (Boyacá, Colombia)
Fauna - Conservación de especímenes
Conservación de la biodiversidad
Modelos de distribución
Gradiente de elevación
Variables climáticas
Andes colombianos
García Monroy, Juan Sebastián
Distribución espacial y temporal de la diversidad taxonómica de aves en el gradiente altitudinal de la Serranía de las Quinchas, Colombia
title Distribución espacial y temporal de la diversidad taxonómica de aves en el gradiente altitudinal de la Serranía de las Quinchas, Colombia
title_full Distribución espacial y temporal de la diversidad taxonómica de aves en el gradiente altitudinal de la Serranía de las Quinchas, Colombia
title_fullStr Distribución espacial y temporal de la diversidad taxonómica de aves en el gradiente altitudinal de la Serranía de las Quinchas, Colombia
title_full_unstemmed Distribución espacial y temporal de la diversidad taxonómica de aves en el gradiente altitudinal de la Serranía de las Quinchas, Colombia
title_short Distribución espacial y temporal de la diversidad taxonómica de aves en el gradiente altitudinal de la Serranía de las Quinchas, Colombia
title_sort distribucion espacial y temporal de la diversidad taxonomica de aves en el gradiente altitudinal de la serrania de las quinchas colombia
topic Diversidad biológica - Serranía de las Quinchas (Boyacá, Colombia)
Fauna - Conservación de especímenes
Conservación de la biodiversidad
Modelos de distribución
Gradiente de elevación
Variables climáticas
Andes colombianos
url http://repositorio.uptc.edu.co/handle/001/8881
work_keys_str_mv AT garciamonroyjuansebastian distribucionespacialytemporaldeladiversidadtaxonomicadeavesenelgradientealtitudinaldelaserraniadelasquinchascolombia