Identification of a synchronous generator parameters using recursive least squares and Kalman filter

The comparison between recursive least squares (RLS) and Kalman filter (KF) is presented in this paper, both methods were adequate to estimate six parameters of a synchronous machine. The work focused on finding the operating conditions which the quality of the identification achieved with Kalman fi...

Full description

Bibliographic Details
Main Authors: Bravo Montenegro, Diego Alberto, Rengifo, Carlos Felipe, Giron, Cristian, Palechor, Jhon
Format: Online
Language:spa
Published: Universidad Pedagógica y Tecnológica de Colombia 2021
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/11779
_version_ 1801706347909087232
author Bravo Montenegro, Diego Alberto
Rengifo, Carlos Felipe
Giron, Cristian
Palechor, Jhon
author_facet Bravo Montenegro, Diego Alberto
Rengifo, Carlos Felipe
Giron, Cristian
Palechor, Jhon
author_sort Bravo Montenegro, Diego Alberto
collection OJS
description The comparison between recursive least squares (RLS) and Kalman filter (KF) is presented in this paper, both methods were adequate to estimate six parameters of a synchronous machine. The work focused on finding the operating conditions which the quality of the identification achieved with Kalman filter is better than recursive least squares. A linear model of the machine is used in order to considerate the currents and their derivatives as the system inputs while the three-phase voltage signals are the outputs. Furthermore two experiments with simulated and measured data were carried out, three operating scenarios and two variations of the algorithms respectively were considered. Despite the great similarity and good performance of both methods, it was found that Kalman filter slightly exceeded least squares due to the fact that it presented smaller oscillations in the estimated value of the parameters for any operating condition.
format Online
id oai:oai.revistas.uptc.edu.co:article-11779
institution Revista Ciencia en Desarrollo
language spa
publishDate 2021
publisher Universidad Pedagógica y Tecnológica de Colombia
record_format ojs
spelling oai:oai.revistas.uptc.edu.co:article-117792021-12-14T02:35:17Z Identification of a synchronous generator parameters using recursive least squares and Kalman filter Identificación de los parámetros de un generador síncrono mediante mínimos cuadrados recursivos y filtro de Kalman Bravo Montenegro, Diego Alberto Rengifo, Carlos Felipe Giron, Cristian Palechor, Jhon Identificación, Modelo Dinámico, Filtro de Kalman, Mínimos Cuadrados Recursivos. Identification, Dynamic Model, Kalman Filter, Recursive least squares. The comparison between recursive least squares (RLS) and Kalman filter (KF) is presented in this paper, both methods were adequate to estimate six parameters of a synchronous machine. The work focused on finding the operating conditions which the quality of the identification achieved with Kalman filter is better than recursive least squares. A linear model of the machine is used in order to considerate the currents and their derivatives as the system inputs while the three-phase voltage signals are the outputs. Furthermore two experiments with simulated and measured data were carried out, three operating scenarios and two variations of the algorithms respectively were considered. Despite the great similarity and good performance of both methods, it was found that Kalman filter slightly exceeded least squares due to the fact that it presented smaller oscillations in the estimated value of the parameters for any operating condition. En este articulo se presenta la comparación entre mínimos cuadrados recursivos (RLS) y filtro de Kalman (KF), ambos métodos fueron adecuados para estimar seis parámetros de una máquina síncrona. El trabajo se centró en encontrar las condiciones de funcionamiento en las que la calidad de la identificación lograda con el filtro de Kalman es mejor que los mínimos cuadrados recursivos. Se utiliza un modelo lineal de la máquina para considerar las corrientes y sus derivadas como entradas del sistema, mientras que las señales de tensión trifásica son las salidas. Además, se llevaron a cabo dos experimentos con datos simulados y medidos, se consideraron tres escenarios operativos y dos variaciones de los algoritmos respectivamente. A pesar de la gran similitud y buen desempeño de ambos métodos, se encontró que el filtro de Kalman excedía levemente los mínimos cuadrados debido a que presentaba menores oscilaciones en el valor estimado de los parámetros para cualquier condición de operación. Universidad Pedagógica y Tecnológica de Colombia 2021-01-08 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/11779 10.19053/01217488.v12.n1.2021.11779 Ciencia En Desarrollo; Vol. 12 No. 1 (2021): Vol 12, Núm.1 (2021): Enero-Junio; 13-21 Ciencia en Desarrollo; Vol. 12 Núm. 1 (2021): Vol 12, Núm.1 (2021): Enero-Junio; 13-21 2462-7658 0121-7488 spa https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/11779/10690 Derechos de autor 2021 CIENCIA EN DESARROLLO
spellingShingle Identificación, Modelo Dinámico, Filtro de Kalman, Mínimos Cuadrados Recursivos.
Identification, Dynamic Model, Kalman Filter, Recursive least squares.
Bravo Montenegro, Diego Alberto
Rengifo, Carlos Felipe
Giron, Cristian
Palechor, Jhon
Identification of a synchronous generator parameters using recursive least squares and Kalman filter
title Identification of a synchronous generator parameters using recursive least squares and Kalman filter
title_alt Identificación de los parámetros de un generador síncrono mediante mínimos cuadrados recursivos y filtro de Kalman
title_full Identification of a synchronous generator parameters using recursive least squares and Kalman filter
title_fullStr Identification of a synchronous generator parameters using recursive least squares and Kalman filter
title_full_unstemmed Identification of a synchronous generator parameters using recursive least squares and Kalman filter
title_short Identification of a synchronous generator parameters using recursive least squares and Kalman filter
title_sort identification of a synchronous generator parameters using recursive least squares and kalman filter
topic Identificación, Modelo Dinámico, Filtro de Kalman, Mínimos Cuadrados Recursivos.
Identification, Dynamic Model, Kalman Filter, Recursive least squares.
topic_facet Identificación, Modelo Dinámico, Filtro de Kalman, Mínimos Cuadrados Recursivos.
Identification, Dynamic Model, Kalman Filter, Recursive least squares.
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/11779
work_keys_str_mv AT bravomontenegrodiegoalberto identificationofasynchronousgeneratorparametersusingrecursiveleastsquaresandkalmanfilter
AT rengifocarlosfelipe identificationofasynchronousgeneratorparametersusingrecursiveleastsquaresandkalmanfilter
AT gironcristian identificationofasynchronousgeneratorparametersusingrecursiveleastsquaresandkalmanfilter
AT palechorjhon identificationofasynchronousgeneratorparametersusingrecursiveleastsquaresandkalmanfilter
AT bravomontenegrodiegoalberto identificaciondelosparametrosdeungeneradorsincronomedianteminimoscuadradosrecursivosyfiltrodekalman
AT rengifocarlosfelipe identificaciondelosparametrosdeungeneradorsincronomedianteminimoscuadradosrecursivosyfiltrodekalman
AT gironcristian identificaciondelosparametrosdeungeneradorsincronomedianteminimoscuadradosrecursivosyfiltrodekalman
AT palechorjhon identificaciondelosparametrosdeungeneradorsincronomedianteminimoscuadradosrecursivosyfiltrodekalman