Acoustic lung signals analysis based on Mel frequency cepstral coefficients and self-organizing maps
This study analyzes acoustic lung signals with different abnormalities, using Mel Frequency Cepstral Coefficients (MFCC), Self-Organizing Maps (SOM), and K-means clustering algorithm. SOM models are known as artificial neural networks than can be trained in an unsupervised or supervised manner. Both...
Главные авторы: | Orjuela-Cañón, Álvaro David, Posada-Quintero, Hugo Fernando |
---|---|
Формат: | Online |
Язык: | eng |
Опубликовано: |
Universidad Pedagógica y Tecnológica de Colombia
2016
|
Предметы: | |
Online-ссылка: | https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5300 |
- Схожие документы
-
SOPHIA: System for Ophthalmic Image Acquisition, Transmission, and Intelligent Analysis
по: Perdomo-Charry, Oscar Julián, и др.
Опубликовано: (2020) -
Consequentialism as a limit on constitutional, legal and juridical argumentation
по: Guagua-Castillo, Jairo, и др.
Опубликовано: (2014) -
Ultrasound Applied in the Reduction of Viscosity of Heavy Crude Oil
по: Olaya-Escobar, David Roberto, и др.
Опубликовано: (2020) -
Using Decision Trees to Predict Critical Reading Performance.
по: Timaran-Buchely, Andrea, и др.
Опубликовано: (2021) -
Decision trees for predicting factors associated with academic performance of high school students in Saber 11 tests
по: Timarán-Pereira, Ricardo, и др.
Опубликовано: (2019)