A memetic algorithm for minimizing the makespan in the Job Shop Scheduling problem

The Job Shop Scheduling Problem (JSP) is a combinatorial optimization problem cataloged as type NP-Hard. To solve this problem, several heuristics and metaheuristics have been used. In order to minimize the makespan, we propose a Memetic Algorithm (MA), which combines the exploration of the search s...

Ամբողջական նկարագրություն

Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: Lamos-Díaz, Henry, Aguilar-Imitola, Karin, Pérez-Díaz, Yuleiny Tatiana, Galván-Núñez, Silvia
Ձևաչափ: Online
Լեզու:eng
Հրապարակվել է: Universidad Pedagógica y Tecnológica de Colombia 2017
Խորագրեր:
Առցանց հասանելիություն:https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5776
Նկարագրություն
Ամփոփում:The Job Shop Scheduling Problem (JSP) is a combinatorial optimization problem cataloged as type NP-Hard. To solve this problem, several heuristics and metaheuristics have been used. In order to minimize the makespan, we propose a Memetic Algorithm (MA), which combines the exploration of the search space by a Genetic Algorithm (GA), and the exploitation of the solutions using a local search based on the neighborhood structure of Nowicki and Smutnicki. The genetic strategy uses an operation-based representation that allows generating feasible schedules, and a selection probability of the best individuals that are crossed using the JOX operator. The results of the implementation show that the algorithm is competitive with other approaches proposed in the literature.