Existencia y unicidad de la solución vectorial del problema de Dirichlet para la ecuación del calor singular con coeficientes matriciales

Spa: En este trabajo consideramos el problema bien condicionado de un sistema de ecuaciones en derivadas parciales con condiciones de Dirichlet que describe a la ecuación del calor con coeficientes matriciales, en su justificación con un enfoque clásico aplicamos la transformada de Fourier y propied...

Повний опис

Бібліографічні деталі
Автори: Salazar, Manuel J., Villa Chica, Edison Esneider
Формат: Documento de Conferencia
Мова:spa
Опубліковано: 2021
Онлайн доступ:http://repositorio.uptc.edu.co/handle/001/7807
Опис
Резюме:Spa: En este trabajo consideramos el problema bien condicionado de un sistema de ecuaciones en derivadas parciales con condiciones de Dirichlet que describe a la ecuación del calor con coeficientes matriciales, en su justificación con un enfoque clásico aplicamos la transformada de Fourier y propiedades de la inversa Drazin de una matriz lo cual induce la existencia de la solución buscada, luego mediante la descomposición canónica de Jordan de una matriz demostramos la unicidad para cualquier solución del problema de Dirichlet obtenida. Palabras claves: Problema bien condicionado, prolema de Dirchlet, descomposición canónica de Jordan y la inversa Drazin de una matriz, Kernel Gaussiano.