Acerca de las soluciones no triviales para un problema Dirichlet asintóticamente lineal

Spa: En particular el problema de Dirichlet con condición de frontera, genera una ecuación diferencial relacionada con el operador laplaciano, el estudio de esta ecuación al ser ligada con los espacios de Sobolev y el teorema espectral para operadores compactos, muestra que la ubicación del espectro...

詳細記述

書誌詳細
第一著者: García, Mireya
フォーマット: Documento de Conferencia
言語:spa
出版事項: 2021
オンライン・アクセス:http://repositorio.uptc.edu.co/handle/001/8181
その他の書誌記述
要約:Spa: En particular el problema de Dirichlet con condición de frontera, genera una ecuación diferencial relacionada con el operador laplaciano, el estudio de esta ecuación al ser ligada con los espacios de Sobolev y el teorema espectral para operadores compactos, muestra que la ubicación del espectro con respecto a la diferencial de la no linealidad del problema de Dirchlet genera múltiples soluciones; y la teoría de grado en este caso sirve para justificar la existencia de estas soluciones, además de brindar información sobre su naturaleza. En este trabajo se demuestra que el problema elíptico semilineal tiene por lo menos tres soluciones no triviales, de las cuales una es positiva, otra negativa y la tercera cambia de signo, mediante el Teorema de Paso de Montaña y el grado de Leray Schauder. Palabras clave: Problema elíptico semilineal, cambio de signo de las soluciones, grado de Leray Schauder.